

HPSS VFS Interface (HPSSFS)

A file system interface into HPSS

http://www.hpss-collaboration.org

1

What is HPSSFS?

- HPSSFS is a virtual file system (VFS)
- A VFS is a local or remote file system that is mounted to be accessible to a local system
- The HPSS VFS interface (HPSSFS) enables HPSS to be accessible to local users and applications, just like an NFS mounted file system
- Leverage existing file system applications with HPSS
 - \circ Standard Linux commands such as ls, cat, touch, etc.
 - \circ Shell scripts, custom programs, etc.
- Use standard file and I/O functions with HPSS

 Standard Linux functions such as open(), read(), etc.
 POSIX ACLs are supported

Conceptual Architecture

- HPSSFS can provide direct, filesystem-style access to HPSS for a Linux computational cluster
- HPSSFS can enable gateway applications such as Secure FTP, NFS Ganesha, Samba, etc. with HPSS
- Multiple gateways for scalability and sandboxing
- Gateways must provide authentication and security

HPS

HPSS High Performance Storage System

Appropriate Usage

- Long term data storage
 - \circ While a file system interface is presented, this does not change the workflow or optimal use cases for HPSS
 - \circ Use in a similar manner to other HPSS applications
- Data may be migrated between disk and tape
- Applications must be able to tolerate tape latencies • For example, "grep" is dangerous and may generate a huge number of tape mounts
- Linux only

Features

- Linux Extended Attributes
 - Set and retrieve user metadata
 - \circ Set and retrieve HPSS extended metadata
- Automatic checksum generation and verification • Endpoint and End to end data integrity
- Data Storage and Movement Flexibility • Control how new data is stored in HPSS
- User and Group ID Mapping
 - \circ Map local users and groups to HPSS users and groups
- HPSS IOCTLs
 - \circ Passthrough commands to allow for HPSS specific actions

Linux Extended Attributes

- Allow users or applications, via standard Linux setfattr and getfattr calls, to associate custom metadata with a file or directory
- This data is in HPSS metadata and will not cause a tape mount

fuse# setfattr -n user.color -v blue test fuse# getfattr -d test # file: test user.color="blue"

Linux Extended Attributes

- Special system attributes to get HPSS extended attribute metadata o system.hpss.level, system.hpss.bitfile, system.hpss.comment, system.hpss.account, and more
- Useful for detecting when data is on disk vs. tape or other HPSS-specific information

fuse# getfattr -n system.hpss.level testdisk

file: testdisk

system.hpss.level="0:disk:2048:1048576:1:4194304:(2048:0:[MY0004]);1:t ape:nodata

http://www.hpss-collaboration.org

Automatic Checksum Generation and Validation

- Calculate and store file checksums during storage
 - \circ MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA512, crc32, adler32 supported
 - \circ Transparent to the end user
 - $\circ\,$ Can also be calculated on open and stored if on files without a checksum
- Data Integrity at the User and Server level
 - \circ Validate checksum on opening
 - If checksum mismatch occurs, the application does not get corrupted data back
 - $\circ\,$ End to End Data Integrity
 - File checksum is checked again upon migration within $\ensuremath{\mathrm{HPSS}}$
- Checksum metadata is visible to the end user via Extended Attributes

Data Storage and Movement Flexibility

- Data storage can be controlled at the mount point level
 - Class of Service
 - \circ File Family
 - \circ Use large data segments

Control data movement

- \circ Specify the data hostname
- \circ Allow or Disallow SAN3P transfers
- \circ Allow or Disallow shared memory transfers
- $\circ\,$ Enable or disable staging data on open
- Keep small files on disk
 - $\circ\,$ Files can be "purge locked" to stay available on disk automatically based on their size

User and Group ID Mapping

- \bullet Allow local user and group IDs to be mapped to HPSS IDs
- Provides a point of separation so that HPSS IDs need not be extended out to the end client, and vis versa
- Two different modes
 - \circ User Mapping
 - The user who performed the mount will be mapped to a different HPSS user
 - \circ File Mapping
 - A file containing a mapping between one or many local to HPSS user or group IDs
 - The mapping can be between user name or ID

Extensions

• IOCTLs

- Using the Linux IOCTL interface, an application may make a call to perform HPSS-specific actions against a file
 - Examples: Get the COS, Purge data from the FUSE cache, Purge Lock or Unlock
- hpssfs_undelete
 - \circ Utility which undeletes a file in an HPSS trashcan directory
- fallocate(2)
 - \circ Allows disk space to be preallocated

