HPSS User’s Guide

September 23, 2025: High Performance Storage System 11.3

Table of Contents

1. Overview

1.1. User interfaces

1.1.1. File Transfer Protocol (FTP)

1.1.2. Parallel FTP (PFTP)

1.1.3. API Tools

1.1.4. HPSS Virtual File System (VES) interface

1.2. Storage concepts

1.2.1. Class of Service (COS)
1.2.2. Storage class

1.2.3. Storage hierarchy
1.2.4. File family

1.3. Interface usage considerations

1.3.1. Possible reasons for using FTP
1.3.2. Possible reasons for using PFTP

1.4. User IDs
1.5. User accounts
2. File Transfer Protocol (FTP)
2.1. FTP site (and quote) commands

2.1.1. Aborting a transfer by request ID - abortreq
2.1.2. Allocating space for files - site allo64

2.1.3. Changing a file’s group by ID - chgid

2.1.4. Changing a file’s group by name - chgrp
2.1.5. Changing a file’s permissions - chmod

2.1.6. Changing a file’s owner by name - chown
2.1.7. Changing a file’s owner by ID - chuid

2.1.8. Generate a request ID that will be used on a future transfer - genreqid

2.1.9. Getting the account ID of a file or session - getacct
2.1.10. Getting the file family of a file - getfam
2.1.11. Listing supported server features - feat
2.1.12. Listing or setting idle time
2.1.13. Provide an easily parseable set of file facts - mlst
MLST options
MLST HPSS-specific facts
2.1.14. File listings for files newer than a specified date
2.1.15. Modify server command behavior - opts
2.1.16. Toggle display of request ID during transfers - reportreqid
2.1.17. Staging a batch of files recursively - rstagebatch
2.1.18. Setting the account ID of a file - setacct

0 00 00 N N N0 N o0 o o oyl ok bk

[N T N T N S S g S e Y
_ O O W W 00 00 J J O O Ul Ul Ul oWwew NN R O o

2.1.19.
2.1.20.

2.1.21

Specifying a file’s Class of Service - setcos

Specify that write operations should stop on EOM

. Specifying a file’s file family - setfam
2.1.22.
2.1.23.
2.1.24.
2.1.25.
2.1.26.
2.1.27.
2.1.28.
2.1.29.

Specifying a file’s file checksum - sethash

Staging a file - stage

Staging a batch of files - stagebatch

Creating a symbolic link - symlink

Retrieve a UDA attribute

Set a UDA attribute

Setting the desire wait options (for migrated files) - wait

Changing the default umask

2.2. List directory extensions
3. Parallel File Transfer Protocol (PFTP)
3.1. Parallel FTP client transfers

3.1.1. Parallel FTP client/server configuration
HPSS. conf file

Local file functions

3.2. PFTP site (and quote) commands
3.2.1. Listing or setting HPSS ACLs
3.2.2. Determining or setting buffer sizes [GridFTP]

3.2.3. Reading configuration options for the PFTP server

3.2.4. File listings for files newer than a specified date

3.2.5. Perform media timing (eliminating the network transfer time)
3.3. Additional PFTP commands

3.3.1.

General login messages (examples)

3.3.2. Parallel append - pappend

3.3.3. Parallel file store - pput

3.3.4. Multiple parallel file store - mpput

3.3.5. Parallel file retrieval - pget

3.3.6. Multiple parallel file retrieval - mpget

3.3.7. Local file append - Ifappend
3.3.8. Local file store - 1Ifput

3.3.9. Local file retrieval - Ifget

3.3.10.
3.3.11.
3.3.12.
3.3.13.
3.3.14.
3.3.15.

Multiple local file store - mlfput

Multiple local file retrieval - mlfget
Recursive commands - recursive

Specify transfer stripe width - setpwidth
Specify transfer block size - setpblocksize

Multinode enable or disable - multinode

3.3.16. Autoparallel enable or disable - autoparallel

3.3.17.

Get current protocol mode - getprot

21
22
22
23
23
24
24
24
25
26
27
27
29
32
33
33
33
34
35
36
36
36
37
37
38
39
40
41
42
43
44
45
46
48
49
50
51
52
53
53
54

3.3.18. Get tuning parameters - gettun
3.3.19. Set the PDATA_ONLY protocol - pdata
3.3.20. Set the PDATA_PUSH protocol - pdatapush
3.3.21. Set the PDATA_AND_MOVER protocol - pmover
3.3.22. Set the socket buffer size - setsock
3.3.23. Set the transfer buffer size - setxfer

Appendix A: Glossary of terms and acronyms

Appendix B: References

Appendix C: Developer acknowledgments

35
56
57
57
58
59
60
74
75

Copyright notification

Copyright © 1992-2025 International Business Machines Corporation, The
Regents of the University of California, Los Alamos National Security, LLC,
Lawrence Livermore National Security, LLC, Sandia Corporation, and UT-
Battelle.

All rights reserved.

Portions of this work were produced by Lawrence Livermore National Security, LLC, Lawrence
Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344 with the U.S.
Department of Energy (DOE); by the University of California, Lawrence Berkeley National
Laboratory (LBNL) under Contract No. DE-AC02-05CH11231 with DOE; by Los Alamos National
Security, LLC, Los Alamos National Laboratory (LANL) under Contract No. DE-AC52-06NA25396
with DOE; by Sandia Corporation, Sandia National Laboratories (SNL) under Contract No. DE-AC04-
94A1.85000 with DOE; and by UT-Battelle, Oak Ridge National Laboratory (ORNL) under Contract
No. DE-AC05-000R22725 with DOE. The U.S. Government has certain reserved rights under its
prime contracts with the Laboratories.

DISCLAIMER

Portions of this software were sponsored by an agency of the United States Government. Neither
the United States, DOE, The Regents of the University of California, Los Alamos National Security,
LLC, Lawrence Livermore National Security, LLC, Sandia Corporation, UT-Battelle, nor any of their
employees, makes any warranty, express or implied, or assumes any liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.

Trademark usage

High Performance Storage System is a trademark of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.

IBM, DB2, DB2 Universal Database, AIX, pSeries, and xSeries are trademarks or registered
trademarks of International Business Machines Corporation.

AIX and RISC/6000 are trademarks of International Business Machines Corporation.

UNIX is a registered trademark of the Open Group.

Linux is a registered trademark of Linus Torvalds in the United States and other countries.
Kerberos is a trademark of the Massachusetts Institute of Technology.

Java is a registered trademark of Oracle and/or its affiliates.

ACSLS is a trademark of Oracle and/or its affiliates.

Microsoft Windows is a registered trademark of Microsoft Corporation.

Other brands and product names appearing herein may be trademarks or registered trademarks of

third parties.

About this book

The High Performance Storage System (HPSS) User’s Guide provides the necessary information for
transferring files using HPSS. In particular, the following interfaces are described:

 File Transfer Protocol (FTP)

» Parallel FTP (PFTP)

* HPSS Virtual File System (VES)

- It is not the intent of this document to define the standard commands and
subcommands provided by standard FTP and POSIX compliant file systems. Only
interface extensions provided by HPSS are defined within the HPSS User’s Guide.

Refer to the HPSS Admin Guide for descriptions of the interfaces provided to HPSS administrators.
Refer to the HPSS Programmer’s Reference for programming interfaces provided to the end user.
Refer to the HPSS Error Messages Manual for a list of all HPSS error and advisory messages which
are output by the HPSS software.

The HPSS User’s Guide is structured as follows:

* Chapter 1: Overview - Provides an overview of each type of user interface, a summary of key
storage concepts, and recommendations on usage.

* Chapter 2: File Transfer Protocol (FTP) - Defines the extensions to the standard FTP interface.
* Chapter 3: Parallel File Transfer Protocol (PFTP) - Defines the Parallel FTP (PFTP) interface.
» Appendix A: Glossary of Terms and Acronyms

» Appendix B: References - Lists documents cited in the text as well as other reference materials.

* Appendix C: Developer Acknowledgments

Typographic and keying conventions

This document uses the following typographic conventions:

Example commands that should be typed at a command line will be proceeded by a percent sign
("%") and be presented in a boldface courier font:

% sample command
Any text preceded by a pound sign ("#") should be considered comment lines:
This is a comment

Italic Italic words or characters represent variable values to be supplied.

[1 Brackets enclose optional items in syntax and format descriptions.

\{} Braces enclose a list of items to select in syntax and format descriptions.

Chapter 1. Overview

The High Performance Storage System (HPSS) has been designed to meet the high end of archival
storage system and data management requirements. These requirements have led to a scalable
design which uses network attached storage devices to transfer data at rates up to multiple
gigabytes per second into data stores of many petabytes.

Listed below are the user interfaces available for accessing data in the HPSS.

1.1. User interfaces

1.1.1. File Transfer Protocol (FTP)

HPSS provides an industry-standard FTP user interface. Because FTP is a serial interface, data sent
to a user is received serially. This does not mean that the data within HPSS is not stored and
retrieved in parallel. It simply means that the FTP daemon within HPSS must consolidate its
internal parallel transfers into a serial data transfer to the user. HPSS FTP performance in many
cases will be limited not by the speed of a single storage device, as in most other storage systems,
but by the speed of the data path between the HPSS FTP daemon and the user’s FTP client.

All FTP commands are supported or properly rejected if the HPSS Parallel FTP Daemon does not
implement a specific feature. In addition, the ability to specify Class of Service is provided via the
quote site or site commands. Additional site command options are provided for chgrp, chgid,
chmod, chown, chuid. stage, wait, and symlink. The HPSS PFTP Daemon supports access from any
FTP client that conforms to RFC-0959. In addition, the quote allo64 command is supported.
Additional "site" commands are available as described in PFTP site (and quote) commands below.

Proxy (third-party) transfers are not supported. Also, to maximize performance, the user should
explicitly change the data transfer type to binary. ASCII transfers are very inefficient as the daemon
must scan the entire file to determine how many carriage returns to insert so that it can compute
the actual amount of date to transfer. It may also cause incorrect results if a file is stored as binary
and retrieved as ASCII, or vice versa.

Refer to the HPSS Admin Guide for information on configuring PFTP.

1.1.2. Parallel FTP (PFTP)

PFTP supports normal FTP plus extensions. It is built to optimize FTP performance for storing and
retrieving files from HPSS by allowing the data to be transferred in parallel to the client. The
interface presented to the user has syntax similar to FTP but with some extensions to allow the user
to transfer data to and from HPSS across parallel communication interfaces. PFTP supports
transfers via TCP/IP and communicates directly with HPSS Movers to transfer data.

The following constraints are imposed by PFTP.

* Outbound "Pipes" may be configured and supported. Inbound "Pipes" (pgets) are not supported.
The use of "Pipes" should be discouraged.

* Proxy (third-party) transfers are not supported.

» ASCII transfers are not supported over the parallel interface. Since extra characters are inserted
in the stream by the ASCII translation, there is no way to resolve data placement in a parallel
stream. Note that some standard FTP implementations default to ASCII or to "Auto". If either of
these are the case, it will be necessary to specify binary by entering the bin command.

» PFTP client access is supported only from nodes which support the HPSS PFTP client software.

1.1.3. API Tools

HPSS provides a set of basic API tools for use in HPSS. See the individual tool man pages for details.
The purpose of these tools is to provide a convenient command-line tool suite into HPSS for
administrators for ease of scripting and basic system use. These tools fill a niche in HPSS to provide
a basic set of tools for interacting with HPSS out of the box.

These tools are not meant to be a high performance client interface or alternative to such
interfaces. There are significant startup costs associated with these tools including authentication
and connection management that will keep these tools from performing as well as other
applications (FUSE, HSI, PFTP, etc.) at scale.

The following tools are provided:

hpsscat - Read an HPSS file

hpsschmod - Change an HPSS file’s mode

hpsschown - Change an HPSS file’s owner

hpsscp - Copy a file into or out of HPSS

hpssgetvol - Get volume information about an HPSS file
hpssgetxattrs - Get extended attribute information about an HPSS file
hpssln - Create a link or symlink in HPSS

hpssls - List an HPSS directory

© ® N o ok w o=

hpssmkdir - Make an HPSS directory

[E
e

hpsspurge - Purge an HPSS file

—
[N

. hpssrm - Remove an HPSS file

—
N

. hpssrmdir - Remove an HPSS directory

[EnN
w

. hpsssetcos - Set the COS of an existing HPSS file

[
>

hpssstat - Stat an HPSS file
15. hpsstouch - Touch an HPSS file

1.1.4. HPSS Virtual File System (VFES) interface

Support for HPSS VFS has been deprecated in favor of an analogous application called HPSSFS-
FUSE. Refer to HPSSFS-FUSE documentation for its usage.

1.2. Storage concepts

This section defines key HPSS storage concepts which have a significant impact on the usability of
HPSS. Configuration of the HPSS storage objects and policies is the responsibility of your HPSS
administrator.

1.2.1. Class of Service (COS)

A COS is an abstraction of storage system characteristics that allows HPSS users to select a
particular type of service based on performance, space, and functionality requirements. Each COS
describes a desired service in terms of characteristics such as minimum and maximum file size,
transfer rate, access frequency, latency, and valid read or write operations. The desired COS is
selected when the file is created. Underlying a COS is a storage hierarchy that describes a
progression of storage media that may be used to store the file.

For the FTP and PFTP interfaces, the COS ID may be explicitly specified by using the site setcos
command. If not specified, a default COS is used. Contact your HPSS administrator to determine the
COSs which have been defined and available for your use.

PFTP provides a feature to automatically store the local file size in the minimum and maximum file
size fields of the COS. This feature is also provided for FTP clients which support the ALLO
command. This allows the COS selection to be made according to file size. The HPSS administrator
should ensure that COS definitions contain proper minimum and maximum file sizes in order for
PFTP (FTP clients which support ALLO) to optimize storage utilization when transferring files to
HPSS.

If the COS ID is explicitly set by using the site setcos command, that COS will be
used regardless of file size.

A COS is implemented by a storage hierarchy of one to five storage classes. Storage hierarchies and
storage classes are not directly visible to the user, but are described in the following sections.

1.2.2. Storage class

An HPSS storage class is used to group various storage media together to provide them with
uniform characteristics. The attributes associated with a storage class are both physical and logical.
Physical storage media in HPSS are called physical volumes. Physical characteristics associated with
physical volumes are the media type, block size, the estimated amount of storage space on volumes
in this class, and how often to write tape marks on tape volumes.

Physical volumes are organized into logical virtual volumes. Virtual volumes can be striped by
aggregating two or more physical volumes in the virtual volume. Some of the virtual volume
attributes associated with the storage class are virtual volume block size, stripe width, data transfer
rate, latency associated with devices supporting the physical media in this class, and disk storage
segment size. In addition, the storage class has attributes that associate it with a particular
migration policy and purge policy to help in managing the usage of media in the storage class.

RAIT volume characteristics are described in storage classes. When a tape storage class is defined to
have three or more physical volumes in a stripe, and a nonzero value for the ParityStripeWidth,

then that storage class defines RAIT volumes. Virtual volumes created in such a storage class will
have RAIT characteristics.

1.2.3. Storage hierarchy

An HPSS storage hierarchy consists of one to five storage classes in a fixed order. Files are moved
up and down the storage hierarchy via stage and migrate operations, based upon storage policy,
usage patterns, storage availability, and user request. For example, a storage hierarchy might
consist of a fast disk storage class, followed by a fast data transfer and medium storage capacity
robot tape system storage class, which in turn is followed by a large data storage capacity, but
relatively slow data transfer tape robot system storage class. Files are placed on a particular level in
the hierarchy depending on the migration policy and staging operations. Multiple copies of a file
may also be specified in the migration policy. If data is duplicated for a file at multiple levels in the
hierarchy, the more recent data is at the higher level (lowest level number) in the hierarchy.
Typically, files are first recorded at the top level of the storage hierarchy, then migrate to lower
levels over time, following the rules laid down in the migration policy associated with the storage
hierarchy. The purge policy determines when a file migrated to a lower level is purged from an
upper level. When the file is read, it is usually first staged back to a higher level following the rules
of the migration policy.

1.2.4. File family

A file family is an attribute of an HPSS file that is used to group files on tape virtual volumes. When
a file is migrated from disk to tape, it is migrated to a tape virtual volume assigned to the family
associated with the file. If no tape is associated with the family, the file is migrated to the next
available tape not associated with a family, then that tape is assigned to the family. The family
affiliation is preserved when tapes are repacked. Configuring file families is an HPSS administrator
function.

1.3. Interface usage considerations

Guidance on when to use a particular HPSS interface is provided below. In general, PFTP provides
the best data transfer performance.

1.3.1. Possible reasons for using FTP

 Utilizes standard FTP interface - Users and applications familiar with FTP can access HPSS with
the standard command set.

» Supports standard FTP client on most platforms - FTP commands may be issued from any
vendor nodes with an FTP interface.

Some GUI-based FTP clients may not function properly.

No specialized code is required.

1.3.2. Possible reasons for using PFTP

* Provides faster file transfers than FTP - PFTP is a better performer than FTP (for large files)
since it provides the capability to stripe data across multiple client data ports.

« Supports files greater than 2 GB - PFTP supports file sizes up to 2** bytes.

» Supports partial file transfer - PFTP provides options on the pget and pput commands to
perform partial file transfers. This is beneficial to users who want to extract pieces of large files.

1.4. User IDs

After the HPSS system is configured, the necessary accounts must be created for HPSS users.
Contact your HPSS administrator to add an account.

For FTP/PFTP access, an FTP account must be created. Contact your HPSS administrator to set up
your account.

Users calling the utilities described in this document may need to be properly logged in with valid
credentials. If the site is using Kerberos authentication, this will require the user to issue the Kkinit
function call to acquire credentials. If UNIX authentication is being used, some of the utilities will
require the user to provide the user password in order to use the utility. The hpssuser utility with
proper parameters should be used by the HPSS administrator to create the Kerberos or UNIX
accounts.

1.5. User accounts

As mentioned in the previous section, the user utilities may require the user to have obtained valid
Kerberos or UNIX credentials. The HPSS administrator should use the hpssuser utility to create the
proper user accounts.

In order to create the credentials, the proper command must be issued. For example, if you are
using Kerberos authentication, the following should be issued:

% kinit <principal name>
When this command is entered, the principal’s identity is validated, and the network credentials
are obtained. The user will be prompted for the password.

If UNIX authentication is being used, the HPSS utility will prompt for the user password. An
example of this is running the scrub utility.

If using Kerberos authentication and the login context is no longer required, the following
command may be used to destroy the login context and associated credentials:

% kdestroy

Another command which might be of interest to the user is:

« Klist - list the primary principal and tickets held in the Kerberos credentials cache.

Chapter 2. File Transfer Protocol (FTP)

This chapter describes the HPSS FTP interface. FTP is supported from any FTP client platform.

HPSS supports the FTP command set for transferring files to and from HPSS through the use of the
following syntax:

ftp <host> [<port_number>]

where,
host is the name of the node where the HPSS PFTP Daemon process resides
port_number is the port number for HPSS, as set up in /etc/services.

At this point, any standard FTP command may be entered. Note: If the message 451 Local resource
failure: audit info. is received, contact your HPSS administrator. This message generally implies
that either HPSS is not correctly configured, or some HPSS components may not be executing.

2.1. FTP site (and quote) commands

HPSS also supports the site commands listed below (for example, site setcos 300 or site setcos
300). The site commands supported only by the HPSS PFTP clients are listed and described in
Parallel File Transfer Protocol (PFTP).

On some platforms, it may be necessary to specify quote site instead of site.

» abortreq

+ allo64

* chgid

* chgrp

* chmod

* chown (valid only for root account)
¢ chuid (valid only formatting root account)
* getacct

» getfam

* feat

» genreqid

* idle

* mlist

10

* newer
* opts

* reportreqid

» rstagebatch

* setacct

* setcos

* seteomoncontrol
» setfam

* sethash

* stage

» stagebatch

* symlink

* udaset

* udaget

* wait

 umask

A detailed explanation of each command follows.

2.1.1. Aborting a transfer by request ID - abortreq

This command is used to abort a file transfer by passing the transfer’s short-form request ID, or a
partial request ID.

site abortreq <request ID>

where,

request ID is the short-form (no dashes) string version of the request ID corresponding to a parallel
file transfer. If a partial request ID is used, it must match only one request ID or the abort will fail.

Due to the underlying API calls involved, this functionality is only supported when
cancelling parallel file transfers (pput/pget/PSTO/PRTR).

Example: The following will cancel the transfer associated with request ID
£20885034774514db8d9a9ab489bb0f9

ftp> site abortreq f20885034774514db8d9a%9ab489bb0f9

11

2.1.2. Allocating space for files - site allo64

This command is used to specify the size of a file for space allocation.
site allob4 <size>

where,

size is a string representing the size of the file. The size may be a decimal number less than 2* or
may be in the form of a decimal number followed by a magnitude representation string. No spaces
are allowed between the decimal number and the magnitude representation string. Accepted
magnitude representation strings are:

KB (kilobyte = 1024),

MB (megabyte = 1,048,576),

GB (gigabyte = 1,073,741,824),

TB (terabyte = 1,099,511,627,776),

PB (petabyte = 1,125,899,906,842,624).

The magnitude representation string is case-independent. The decimal component may contain up
to two decimal points of precision.

"1005.03" will truncate to "1005" if no magnitude representation string is specified.
Similar truncations will occur for excess precision specifications.

This command provides a 64-bit extension to the standard site allo size command. The site allo
size command only accepts decimal values for size. Both these commands are helpful for providing
hints for non-parallel "put" commands.

Example: The following may be entered to specify the file size of 8 GB.

ftp> site allob4 8GB

2.1.3. Changing a file’s group by ID - chgid

This command is used to change the group ID of a file and has the following format:
site chgid <gid> <file>

where,

gid is the new group ID of the file

12

file is the name of the file.
The user must belong to the specified group and be the owner of the file, or be the root user.

Example: The following may be entered to change the group ID of myfile to group ID "210".

ftp> site chgid 210 myfile

2.1.4. Changing a file’s group by name - chgrp

This command is used to change the group name of a file and has the following format:
site chgrp <group> <file>

where,

group is the new group name of the file

file is the name of the file.

The user must belong to the specified group and be the owner of the file, or be the root user.

Example: The following may be entered to change the group of myfile to group "mygroup".

ftp> site chgrp mygroup myfile

2.1.5. Changing a file’s permissions - chmod

This command is used to change the mode of a file and has the following format:
site chmod <mode> <file>

where,

mode is the new octal mode number of the file

file is the name of the file.

Mode is constructed from the bitwise OR of the following modes:
0400 read by owner

0200 write by owner

0100 execute (search in a directory) by owner

0040 read by group

13

0020 write by group

0010 execute (search in a directory) by group

0004 read by others

0002 write by others

0001 execute (search in a directory) by others

The following mode values are only supported by issuing the command using the symbolic formats:
4000 set user ID on execution (u+s)

2000 set group ID on execution (g+s)

1000 sticky bit (o+t)
__ The setuid bit and sticky bits have no meaning in HPSS, but may be set and unset.

The setgid bit is ON by default (although it is not printed by default) and sets
"inheritance" when on.

Only the owner of the file or root user can change its mode.

"o

Example: The following may be entered to change the mode of myfile to "read", "write by owner",
and "group".

ftp> site chmod 0660 myfile

Example: The following may be entered to change the mode of myfile to "read", "write by owner",
and "group”, and also to set the gidbit. All other mode bits are left unchanged.

ftp> site chmod u+rw,g+rws myfile

2.1.6. Changing a file’s owner by name - chown

This command is used to change the owner of a file and has the following format:
site chown <owner> <file>

where,
owner is the new owner of the file
file is the name of the file.

Only the root user can change the owner of a file.

14

Example: The following may be entered to change the owner of /home/smith/myfile to "jones".

ftp> site chown jones /home/smith/myfile

2.1.7. Changing a file’s owner by ID - chuid

This command is used to change the UID of a file and has the following format:
site chuid <uid> <file>

where,

uid is the new UID of the owner of the file

file is the name of the file.

Only the root user can change the UID of a file.

Example: The following may be entered to change the UID of /home/smith/myfile to "201".

ftp> site chuid 201 /home/smith/myfile

2.1.8. Generate a request ID that will be used on a future transfer - genreqid

This command is used to generate and return to the user a request ID that will be used on the next
parallel (pput/pget/PSTO/PRTR) transfer by that user:

site genreqid

Each time a request ID is generated with this command, any previously generated
request ID will be replaced by the new request ID. This means previously
M generated request IDs will not be used on the next parallel transfer and therefore

will not be valid for use with the abortreq site command.

Example:

ftp> site genreqid
200 Transfer request identifier set to: f20885034774514db8d9a9ab489bbof9

2.1.9. Getting the account ID of a file or session - getacct

This command is used to get the account ID associated with a file or directory, or the current FTP
session:

15

site getacct [filename]

where,
filename is the name of the file or directory for which the account ID is desired.

Example: The following will display the account ID of myfile

ftp> site getacct myfile
200 myfile account set to 12345

If no filename is specified, the command returns the current account ID setting for this FTP session.
Example:

ftp> site getacct
200-Account set to 12345
200 Default account is 9876

2.1.10. Getting the file family of a file - getfam

This command is used to get the file family of a file:
site getfam [filename]

where,
filename is the name of the file for which the file family is desired.

Example: The following will display the file family of myfile

ftp> site getfam myfile
200 myfile file family set to 8

If no filename is specified, the command returns the current file family setting. Example:

ftp> site getfam
200 Current file family 1is 8.

2.1.11. Listing supported server features - feat

This command is list supported server features and has the following format:

16

quote feat
Note that due to a command naming conflict, the PFTP client must use quote feat rather than feat to
get FTP server feature output.
Example:
ftp> quote feat
211-Extensions Supported:
MDTM
SIZE
REST STREAM
UTF8
Type*;Size*;Create*;Modify*;Perm*;Family*;x.hpssvol;x.hpsshash;
STAGEBATCH

HPSS
211 End of extensions

2.1.12. Listing or setting idle time

This command is used to determine or change the default idle time (in seconds):
site idle time

where,
time is a number in seconds less than the maximum idle time.

Example: The following may be entered to set the idle time to 1000 seconds.

ftp> site idle 1000
200 Maximum IDLE time set to 1000 seconds

Without a size specifier, the current idle time is returned:

ftp> site idle
200 Current IDLE time Llimit is 1000 seconds; max 7200

2.1.13. Provide an easily parseable set of file facts - mlst

This command retrieves a semi-colon delimited list of information (also called facts) about a single
provided file name. MLST by default returns a basic set of information about the file; however,
there may be additional attributes supported by the server. These additional attributes likely will
incur additional cost to retrieve, and can be identified by sending a "site feat" command. This will

17

list the attributes which are available to be returned by MLST.

The command syntax is as follows:

ftp> quote mlst file-path

Example: The following will cause the MLST command to return only file size information:

ftp> quote mlst testfile

250-Entry fact information follows
Type=file;Size=1024;Family=1;Modify=20190514103437;Create=20190514103435;Perm=awrdf;
testfile

250 MLST command successful.

MLST options

MLST output can be modified by sending an OPTS MLST command. The file name is always part of
the output.

For example, to retrieve only the file size and HPSS volume information, send:

ftp> quote opts mlst size;x.hpssvol
200 MLST OPTS Size;x.hpssvol;

MLST HPSS-specific facts

Here is an explanation of the format of HPSS-specific facts. Other facts are described in the RFC
documentation (https://tools.ietf.org/html/rfc3659).

x.hpssvol

This fact describes the location of the file on the top-level tape tier. For example, if the hierarchy
contains a disk at the top level followed by two tiers of tape, the first tape tier would be
referenced. If dual copy is employed, the first copy is referenced. The fact describes the tape
volume, the tape section, and the tape section offset of the file. These three pieces of information
are delimited by a colon, for example:

ftp> quote mlst testfile
250-Entry fact information follows
X.hpssvol=E0100800:1:0; testfile

250 MLST command successful.

xX.hpsshash

This fact describes the file hash information associated with the file in HPSS. This is not related

18

https://tools.ietf.org/html/rfc3659

to the file hash user attributes which may have been employed by a site. The format is the hash
type, followed by the creator string, followed by a hex representation of the checksum digest,
followed by the file hash flags. The file hash flag values are described in detail in the HPSS
Programmer’s Reference.

For example:
ftp> quote mlst hash

250-Entry fact information follows
x.hpsshash=md5:yourapp:9a8b41ad@2b5d5d7c8fc8f38bf8af47d:USER|VALID; hash

250 MLST command successful.

Description of valid flags
1. USER - A user-supplied checksum (as opposed to one generated by HPSS automatically)
2. GENERATED - The file checksum was generated by HPSS (as opposed to provided by the user)

3. VALID - Checksum is not considered invalid - this does not mean it has been verified, just that it
is not in an invalid state

4. VERIFIED - The user checksum has been verified by HPSS.

5. SKIP - The file has been flagged to skip verification during migration
2.1.14. File listings for files newer than a specified date
The newer command is used to determine which files in a directory are newer than a specified
date. It provides a recursive short listing of files newer than the specified date.

site newer date path

where,

date refers to the date in the format YYYYMMDDHHMMSS

path refers to the pathname.

Example: The following may be entered to determine the files newer than March 03, 2005 13:51:22

in the path specified by mypath.

ftp> site newer 20050301135122 mypath
mypath/scrub_tests/file87
mypath/scrub_tests/fi1e88
mypath/scrub_tests/file89

2.1.15. Modify server command behavior - opts

This command modifies the behavior of subsequent commands to the server.

19

List of commands which support OPTS:
1. MLST
For a reference of options for each supported command, refer to that command’s documentation.

The command syntax is as follows:
quote opts command command-options
Example: The following will cause the MLST command to return only file size information:

ftp> quote opts mlst size
200 MLST OPTS Size;

2.1.16. Toggle display of request ID during transfers - reportreqid

This command acts as a toggle (default is off) that, when on, will report the request ID used for a
parallel file transfer during that transfer.

site reportreqid
Example:

ftp> site reportreqid

200 Report request ID on.

ftp> pget hpsstest

200 Command Complete (110100480, "hpsstest”, 0, 1, 4194304).

remote: hpsstest local: hpsstest

200 Command Complete.

150 Transfer starting. (Request ID f20885034774514db8d9a9ab489bb0of9)

2.1.17. Staging a batch of files recursively - rstagebatch

This command is used to initiate a stage of a batch of migrated files (for example, from tape to disk).
The user can initiate the rstagebatch and then return at a later time to initiate the file transfer
using the FTP mget or PFTP mpget commands.

This operation is recursive and will recursively stage all files in directories that
match the glob pattern. For a nonrecursive batch stage, use stagebatch.

site stagebatch <glob>

20

where,
files is a glob to match the files to be staged.

Example: The following may be entered to stage files that match /home/smith/f*.

ftp> site stage /home/smith/f*

2.1.18. Setting the account ID of a file - setacct

This command is used to set the account ID associated with a file or directory
site setacct <filename> <account_id>

where,
filename is the name of the file or directory for which the user wishes to change the account ID.
account _id is the account ID the user wishes to assign to the file.

Example: The following will set the account ID of myfile to 12345

ftp> site setacct myfile 12345
200 myfile account set to 12345

2.1.19. Specifying a file’s Class of Service - setcos

This command is used to specify a class of service and has the following format:
site setcos <cos_id>

where,
cos_id is the Class of Service identifier (used when creating a new HPSS file during a put operation).

Class of Service is used as a means for specifying the amount of parallelism or media stripe width
for a file. See your HPSS administrator for the Class of Service identifiers defined for your site. If a
Class of Service is not specified, a default is used.

Parallel and striped transfers are not supported by the non-parallel FTP clients.

In the example below, the following commands might be entered to put a large file to HPSS with a
Class of Service identifier of "4".

ftp> site setcos 4

21

2.1.20. Specify that write operations should stop on EOM

This command is used to change the behavior of a parallel put operation. When seteomcontrol is
enabled, if the write operation ends in EOM then the write will fail rather than continuing on a new
device.

site seteomoncontrol <enable_flag>

where,

enable_flag is either 0 (for off) or non-zero (for on). The default value is 0. If no flag is passed, the
server will reply with the current value.

When seteomoncontrol is enabled, it causes the HPSS core server to return control back to the
client after data being written via a parallel transfer hits EOM. This value has no meaning for files
being read.

In the example below, the following commands might be entered to cause an EOM to be returned to
the client.

ftp> site eomoncontrol 1
200 EOMOnControl flag set to 1.

2.1.21. Specifying a file’s file family - setfam

This command is used to specify a file family and has the following format:
site setfam [fam_id]

where,
fam_id is the file family identifier (used when creating a new HPSS file during a put operation).

Example: the following command might be entered to put a large file to HPSS with a file family of
"8".

ftp> site setfam 8
200 Family set to 8.

If no fam_id is specified, the command returns the current file family setting. Example:

ftp> site setfam
200 Current file family 1is 8.

In order to clear the current file family, call this command with fam_id set to "0". Example:

22

ftp> site setfam @
200 File family is now cleared

2.1.22. Specifying a file’s file checksum - sethash

This command is used to specify a file checksum and has the following format:
site sethash <filename> <creator-name> <hash-type> <hash-string>

where,
filename is the file to modify.

creator-name is a user-specified creator string (for example, the application that generated the
checksum).

hash-type is the type of checksum (for example, md5, sha512, and so on)

hash-string is a hex string checksum of the type, using the checksum type specified (for example,
9a8b41ad02b5d5d7c8fc8f38bf8af47d)

Example:

ftp> sethash testperm ftp md5 29a87a6dabec8621156d11e611311cbd
250 SETHASH command successful.

2.1.23. Staging a file - stage

This command is used to initiate a stage of a migrated file (for example, from tape to disk). The user
can initiate the stage and then return at a later time to initiate the file transfer using the FTP get or
PFTP pget commands.

site stage <file>

where,
file is the name of the file.

Example: The following may be entered to stage file /home/smith/myfile.

ftp> site stage /home/smith/myfile

23

2.1.24. Staging a batch of files - stagebatch

This command is used to initiate a stage of a batch of migrated files (for example, from tape to disk).
The user can initiate the stagebatch and then return at a later time to initiate the file transfer using
the FTP mget or PFTP mpget commands.

This operation is not recursive and will only stage the files in the top level. For a
recursive batch stage, use rstagebatch.

site stagebatch <files>

where,
files is a glob to match the files to be staged.

Example: The following may be entered to stage files that match /home/smith/f*.

ftp> site stage /home/smith/f*

2.1.25. Creating a symbolic link - symlink

This command is used to create a symbolic link.
site symlink <path/file> <link>

where,
path/file refers to the destination
link refers to the local filename.

Example: The following may be entered to create a link named sys_passwd in the local directory
pointing to /etc/passwd.

ftp> site symlink /etc/passwd sys_passwd

A dir command will show sys_passwd -> /etc/passwd.

2.1.26. Retrieve a UDA attribute

This command is used to get a UDA attribute.

site udaget <path> <key> <format>

24

where,

path refers to the file

key refers to the UDA attribute
format refers to either XML or value.

Example: The following may be entered to retrieve a UDA attribute from /hpss_test/file.

ftp> site udaget /hpss_test/file /hpss/key value

200 PORT command successful.

150 Opening ASCII mode data connection for /hpss_test/file.
/hpss/key= 5

200 UDA attribute retrieved.

18 bytes received in 0.0124 seconds (0.001 MBytes/sec)

Example: The following may be entered to retrieve a UDA attribute in XML format from
/hpss_test/file

ftp> site udaget /hpss_test/file /hpss/key xml

200 PORT command successful.

150 Opening ASCII mode data connection for /hpss_test/file.
/hpss/key= <key>5</key>

200 UDA attribute retrieved.

35 bytes received in 0.0089 seconds (0.004 MBytes/sec)

2.1.27. Set a UDA attribute

This command will set a UDA attribute.

site udaset <path> <key> <value>

where,

path refers to the file

key refers to the UDA attribute

value refers to the value of the UDA attribute. UDA attributes must start with /hpss.

Example: The following may be entered to set a UDA attribute on /hpss_test/file.

ftp> site udaset /hpss_test/file /hpss/key 5

200 PORT command successful.

150 Opening ASCII mode data connection for /hpss_test/file.
/hpss_test/file /hpss/key= 5

25

200 UDA attribute successfully set.
43 bytes received in 6.1855 seconds (0.000 MBytes/sec)

2.1.28. Setting the desire wait options (for migrated files) - wait

This command is used to notify the HPSS PFTP Daemon.
site wait <option>

where,
option is one of the following values:

-1 or inf(inite) - wait forever for the file to be staged. Do not return from the get or pget command
to complete until the file has been transferred or a transfer error has occurred.

0 - do not wait for the file to be staged. If the file has been migrated, return the appropriate message
and initiate the stage. The user will return later to reissue the get or pget command.

n (where n is an integer) - wait the specified period (in seconds) for the file requested by a get or
pget command to complete. Either transfer the file if the file is staged within the specified period or
return a reply to notify the user to try again later.

Example: The following may be entered to wait for files to be staged.
ftp> site wait -1

The following table describes the behavior the customer should expect from FTP when issuing the
stage and wait commands. Only Classes of Service utilizing the "Stage on Open Background" option
will exhibit predictable results. Refer to the Class of Service section in the HPSS Admin Guide for
more information.

Table 1. Behavior of stage and wait commands

Wait File Condition Command Behavior/Message

Time

No Archived site stage xyz "File xyz is being retrieved from archive."
Wait

No Not Archived site stage xyz "File xyz is currently ready for other

Wait processing.”

Wait # Archived site stage xyz Wait for period then receive message: "File

xyz is currently ready for other
processing.” or "File xyz is currently ready
for other processing." if the file is staged in
the time frame allowed.

26

Wait File Condition Command
Time

Wait # Not Archived site stage xyz

No Archived get Xyz
Wait
No Not Archived get Xyz
Wait
Wait # Archived get Xyz

Wait # Not Archived get Xyz

Behavior/Message

"File xyz is currently ready for other
processing.”

"File xyz is being retrieved from archive."

Transfers data as expected.

Wait for period then receive message: "File
Xyz is being retrieved from archive." or
transfers data as expected if file is staged in
the time allowed.

Transfers file as expected.

2.1.29. Changing the default umask

The umask command is used to change the default umask.

site umask octal-mask

where,

octal-mask refers to the octal mask to be applied.

Example: The following may be entered to change the default umask to "2".

ftp> site umask 0002

When issued without an octal value, the active umask is displayed.

2.2. List directory extensions

FTP supports the Is command to list the contents of a directory. The following standard options are
supported: Is, Is -1, Is - a, and Is -F. In addition to the standard Is options generally provided, HPSS

also provides a -lh option. If - 1h is specified, then a long directory listing is generated. However, in
place of the owner field (field #3) and group field (field #4) listed for the -1 option, the Class of
Service identifier and Account Code are listed.

Example:
ftp> 1s -1h
-rw-rw---- 11 198 157286400 May 13 1996 TEST
-rw-r--r-- 11 160 32768 May 16 1996 prod1
-rw-r--r-- 1 1 160 32768 May 16 1996 prod10

27

28

-rW-r--r--
~rW-r--r--
~FW-F--r--
-rW-r--r--
-rW-r--r--
-rW-r--r--
~rW-r--r--
-FW-F--r--
-rW-r--r--
-rW-r--r--
~rW-r--r--
-rW-r--r--
-rW-r--r--
~rW-r--r--

B T T S e e e e e T e T T S S Y

—_—)) e e)) R R

160
160
160
160
160
160
160
160
160
160
160
160
160
160

32768 May
32768 May
32768 May
32768 May
32768 May
32768 May
32768 May
32768 May
32768 May
32768 May
32768 May
32768 May
32768 May
32768 May

16
16
16
16
16
16
16
16
16
16
16
16
16
16

1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996
1996

prod11
prod12
prod13
prod14
prod15
prod151
prod152
prod153
prod154
prod155
prod156
prod157
prod158
prod159

Chapter 3. Parallel File Transfer Protocol
(PFTP)

This chapter specifies the HPSS PFTP interface. In order to use PFTP, the PFTP client code must be
compiled and supported on the client platform. Contact HPSS support for more guidance. PFTP
supports the FTP command set plus some additional commands. Refer to Additional PFTP

commands for more information. To use PFTP, the user enters one of the following commands:

pftp_client [-bStringSize] [-c] [-d] [-e] [-g] [-h] [-i] [-m] [-n] [-p]
[-t] [-v] [-w###] [-Astring][-BStringSize] [-CH##]
[-RE-#][-SsizeString][-T][-3][Host [Port]]

where,

Table 2. PFTP client command-line options

Option Description

-b Sets the PDATA protocol Blocksize. StringSize is the size specification
in the format: Digit(s)Magnitude; for example, "1MB".

-C Sets "Child" mode. This provides the ability to "emulate" a tty and
interactive mode when executing the client in a "batch" mode.

-d The standard FTP debug specification.

-e Sets "Echo"” mode. When running the client in "batch" mode, this

causes the client to echo each command into the output file
providing a helpful record of commands interleaved with the return
messages.

-8 Disables the expansion of metacharacters in file names. Interpreting
metacharacters can be referred to as expanding (sometimes called
globbing) a file name. See the glob subcommand.

-h Specifies use of the original HPSS protocol, PDATA_AND_MOVER,
regardless of the default specified in the HPSS. conf file

i Turns off interactive prompting during multiple file transfers. See
the prompt, mget, mput, and mdelete subcommands for
descriptions of prompting during multiple file transfers.

-k Kerberos-only option to specify an alternate Kerberos realm for the
PFTP daemon.
-m This argument will enable multinode processing. By default,

multinode processing is disabled. Multinode will be ignored if no
multinode specification for this client/daemon pair is specified in the
HPSS. conf file.

29

Option

-T
Host

Port

Description

Prevents an automatic login on the initial connection. Otherwise, the
ftp command searches for a $HOME/.netrc entry that describes the
login and initialization process for the remote host. See the user
subcommand.

Specifies use of the HPSS protocol (PDATA_ONLY) for parallel
transfers regardless of the default in the HPSS. conf file.

The standard FTP trace specification.

Displays all the responses from the remote server and provides data
transfer statistics. This display mode is the default when the output
of the ftp command is to a terminal, such as the console or a display.

This argument will set the pwidth. The pwidth value must be
specified immediately following this argument.

Specify whether secure authentication should be attempted and how
to deal with failure. "required" means that on failure, the client will
terminate, assuming that the server will not allow login before
secure authentication is successful.

Values: none, attempted, required

Sets the Parallel Blocksize for parallel transfers. StringSize is the size
specification in the format: Digit(s)Magnitude; for example, "1MB".

Sets the default Class of Service (COS) for the session. The argument
is a valid string representation of a decimal COS. COS names are not
accepted.

Specifies use of the PDATA_PUSH protocol. This will be overridden if
another protocol is specified in the .netrc file or if an explicit
specification of another protocol is made by the user.

Used to specify the valid ports for parallel transfers. This is useful in
instances where network filters are invoked which provide port
ranges for TCP traffic. The syntax is "start_range-end_range".

Sets the maximum open/close socket size for HPSS parallel transfers.
An artificial maximum of 250 GB (subject to change) is compiled in.
Results may be smaller than the specified value based on a number
of external HPSS constraints. The default is 1.5 GB. StringSize is the
size specification in the format: Digit(s)Magnitude; for example,
"200GB".

Terminate session on error. Useful for batch processing.
The node where the HPSS PFTP daemon process resides.

The port number for the HPSS PFTP daemon, as set in /etc/services.

The local administrator may opt to define a pftp program link that points to pftp_client.

30

The HPSS 7.5 pftp_client provides both username/password authentication and the GSS facilities
previously provided by the krb5_gss_pftp_client binary in previous versions of HPSS. Contact HPSS
support for details. These clients utilize either standard username/password authentication or the
MIT Kerberos GSS facilities for authentication and reply processing. The GSS-based clients provide
credential authentication facilities (password-less authentication) between the client and the HPSS
PFTP daemon using Kerberos credentials for authentication.

The pftp_client does not obtain the end user’s initial Kerberos credentials. The
end user should obtain these credentials prior to initiating a pftp_client session by
M doing the appropriate Kerberos kinit command. MIT Kerberos is available from

MIT and will not be supplied by the HPSS project for non-HPSS platforms.

Incompatibilities may exist between the HPSS (GSS) PFTP client and daemon and the

- Kerberos-based FTP features provided by IBM with AIX 4.x and AIX 5.x. This has

been reported in the past and was outside the jurisdiction of the HPSS project. The

HPSS PFTP clients and daemon are compatible with the MIT GSS-based FTP
processes.

As a courtesy to HPSS customers, the PFTP client code is available for compilation at customer sites
upon request on non-HPSS platforms, subject to any legal or licensing restrictions. This explicitly
denies any support requirement on IBM or the HPSS development and support personnel for any
modifications made by the customer. Contact HPSS support for details.

The HPSS PFTP client has been successfully compiled on:

* Cray UNICOS [discontinued]

» Hewlett-Packard HP-UX [discontinued]
* Silicon Graphics IRIX [discontinued]
* Sun Solaris (Sparc and Intel)

* Intel Teraflop [discontinued]

* NEC [discontinued]

* [A64 Linux

* Linux Intel (RHEL 4.0 and 5.0)

» SUSE 9.x for AMD64

* Compaq Alpha [discontinued]

* IBM AIX 5.3 and 6.1.

All current ports may be compiled in either 32-bit or 64-bit mode.

Ports to other hardware or software components are the responsibility of the remote site. These
sites will be asked to share their ports with the HPSS development team (and other HPSS facilities);
however, neither IBM nor the HPSS development team accepts any obligation to incorporate any
hardware or software ports into the distribution source. No site-specific features (local mods)
added to the PFTP client by customer sites will be incorporated into the PFTP client without the

31

appropriate modification to the HPSS license agreement.

administrator. This message generally implies that either HPSS is not correctly
configured, or some HPSS components may not be executing.

l If the message Local resource failure: audit info. is received, contact your HPSS

3.1. Parallel FTP client transfers

Parallel transfers involve the creation of child processes to transfer the data between the source
and the destination. This process may be either locally spawned PFTP client children, remotely
initiated PFTP "children", or the combination of both. When the pwidth value is set and a valid
multinode configuration file does not exist or multinode has not been activated, the PFTP client will
provide parallel data paths to the Movers by spawning multiple processes on the same client node
using one or more network interfaces (NICs).

Local File Transfer Probable Configuration for Parallel FTP

thpss home

Tapels) [Migradon]

Figure 1. Local File Transfer Probable Configuration for PFTP

The multinode option supports spawning the client processes across multiple machines/nodes and
multiple interfaces on the remote machines/nodes. This Multinode option may be beneficial on
processors which support shared file systems, such as GPFS on the IBM SP.

If multinode is used in a non-shared file system, the multinode file transfer to the
client will be spread across multiple, separate files, which is not the desired

behavior and can result in data integrity problems.

The client nodes which participate in a multinode transfer are selected from the HPSS.conf
configuration file (see discussion below) which contains entries with control, and optionally, data

32

interface names or addresses. The number of nodes selected from the configuration file is based on
the pwidth value. The starting node is selected using an offset which is maintained by the PFTP
client.

3.1.1. Parallel FTP client/server configuration

The PFTP client can read configuration information from the HPSS.conf file to provide optimal
performance characteristics. This file is configurable by HPSS administrators to provide
performance enhancement. Performance enhancements require considerable expertise. Contact
HPSS support if you need these features. The PFTP server also reads this file and the file should be
present in the directory /var/hpss/etc along with other HPSS configuration files. It should be
marked as readable by everybody and writable only by root, for security reasons.

HPSS. conf file

This configuration file is used to specify performance optimization parameters for the PFTP
components, the HPSS Movers, and potentially site-specific applications. For details of the
implementation of the HPSS.conf file, review the HPSS Admin Guide or contact your HPSS
administrator. This file is constantly being updated with additional features and enhancements.

Local file functions

The local file functions represent performance enhancements using the HPSS parallel protocols
where both the HPSS file and the UNIX source or destination file are "globally available" to the
Movers and the PFTP client processes, such as GPFS file systems. The local file path must be
specified in the file: /var/hpss/etc/hpss_mvr_localfilepath.conf. The specified path must exist for
each PFTP client/Mover machine.

Configuration Criteria:

33

Local File Transfer Jptimal Configuration for Farallel PFTF

Uniz
Fileszyatem

Tape(s) [Migraticn]
Figure 2. Local file transfer optimal configuration for PFTP

Local File Transfer Invalid Configquration for Parallel FIP

/hpss_home

Tape(s) [Migraton]

Figure 3. Local file transfer invalid configuration for PFTP

3.2. PFTP site (and quote) commands

Several additional site commands are available with PFTP.

34

On some platforms, it may be necessary to specify quote site instead of site.

* acl

* bufsize
* gettun
* minfo
* rdrmt

e wtrmt

These commands are described in the following subparagraphs.

3.2.1. Listing or setting HPSS ACLs

The acl command is used to list or set the ACLs for HPSS files and directories.
quote site acl command object

where,
command refers to an acl command from the following list:

* clear

* help

* remove
* replace
* show

* update
object refers to a file or directory.

Example: The following list the ACLs for a directory st_data_mgmt_01.

ftp> quote site acl show st_data_mgmt_01

200 PORT command successful.

150 Opening ASCII mode data connection for acl list.
user_obj:rwxcid

group_obj:rwx-id

other_obj:r-x---

226 Transfer complete.

56 bytes received in 0.0006 seconds (0.093 Mbytes/sec)

35

3.2.2. Determining or setting buffer sizes [GridFTP]

The bufsize command is used to determine or set the buffer size to be used for parallel transfers.
quote site bufsize size

where,
size refers to the desired buffer size.

Example: The following may be entered to set the buffer size to 1 MB.

ftp> quote site bufsize 1048576
200 Current TCP Buffer size is 1048576

Without a size specifier, the current buffer size is returned ("-1" means use the default).

3.2.3. Reading configuration options for the PFTP server

The quote gettun command is used to determine characteristics that the PFTP server uses to
transfer files to the client. This is not implemented at this time.

quote gettun
Example: The following lists the default characteristics of the PFTP Server.

ftp> quote gettun

3.2.4. File listings for files newer than a specified date

The minfo command is used to determine which files in a directory are newer than a specified
date. It provides a recursive long listing of files and directories in the specified path.

quote site minfo date path

where,
date refers to the date in the format YYYYMMDDHHMMSS
path refers to the pathname.

Example: The following may be entered to determine the files newer than March 03, 2005 13:51:22
in the path specified by mypath.

36

ftp> quote site minfo 20050301135122 mypath

F Mon Mar 21 16:43:16 2005 mypath/scrub_tests/file87
F Mon Mar 21 16:43:25 2005 mypath/scrub_tests/fi1e88
F Mon Mar 21 16:43:33 2005 mypath/scrub_tests/fi1e89

3.2.5. Perform media timing (eliminating the network transfer time)

The quote rdrmt command is used to time the reading of data from media by the Movers.
Similarly, the quote wtrmt command is used to time the performance of writing data to the HPSS
media. This is not implemented for HPSS PFTP Server.

quote rdrmt filename Media_read_size Quantity
quote wtrmt filename Media_write_size Quantity

These functions are for obtaining performance information only and are not for
use by users.

3.3. Additional PFTP commands

All FTP extensions described in Chapter 2 are supported by PFTP. In addition, the following
commands (with their abbreviations, if any, shown in parentheses) are supported by PFTP:

* pappend (papp)

* pput, mpput (ppu, mpp)
* pget, mpget (pge, mpg)
* Ifappend (Ifa)

* 1fput, mlfput (Ifp, mlfp)
* Ifget, mlfget (Ifg, mlf)

* recursive (recu)
 setpwidth (setpw)

* setpblocksize (setpb)

* multimode (multi)

* autoparallel (autop)

* getprot (getp)

* gettuningparms (gettun)
* pdata

* pdatapush (pdatap)

* pmover (pmov)

» setsockbufsize (sets)

37

» setxferbufsize (setx)

Pipes are supported by the pput and pget commands if an appropriate configuration
A is performed. The pipes facility uses temporary files. Configuration of the pipe
temporary file path in the PFTP client section of HPSS. conf is strongly advised.

3.3.1. General login messages (examples)
Without valid Kerberos credentials:
my_prompt> pftp_client fire 4021

Parallel block size set to 1048576.
Connected to fire.clearlake.ibm.com.

220-#

HPSS 7.5 Parallel FTP Daemon on fire

coming from fire.clearlake.ibm.com
#

220 fire FTP server (HPSS 7.5 PFTPD V1.1.1 Mon Apr 4 06:36:09
(DT 2005) ready.

334 Using authentication type GSSAPI; ADAT must follow

GSSAPI accepted as authentication type

init_sec_context: (krb5) Miscellaneous failure: No credentials
cache found

init_sec_context: (krb5) Miscellaneous failure: No credentials
cache found

GSSAPI authentication failed

Name (fire:whrahe): hpss

331 GSSAPI user hpss is not authorized as hpss - Password
required.

Password: {abcdefgh}

230 User hpss logged in as hpss.

Remote system type is UNIX.

Using binary mode to transfer files.

%% NOTE: FTP Daemon supports feature discovery **

**%% NOTE: Server supports Parallel Features i

Fkkk Auto-Parallel Substitution Enabled. ****

%*% NOTE: Protocol set to PDATA_AND_MOVER **

**%% NOTE: Daemon does NOT support Transfer Agent

Pwidth set to default(1).

Multinode is Disabled.

ftp>

With appropriate Kerberos credentials (as HPSS):

my_prompt> pftp_client fire 4021
Parallel block size set to 1048576.
Connected to fire.clearlake.ibm.com.

38

220-#
HPSS 7.5 Parallel FTP Daemon on fire

coming from fire.clearlake.ibm.com
#

220 fire FTP server (HPSS 7.5 PFTPD V1.1.1 Mon Apr 4 06:36:09
(DT 2005) ready.

334 Using authentication type GSSAPI; ADAT must follow

GSSAPI accepted as authentication type

GSSAPI authentication succeeded

Preauthenticated FTP to fire as whrahe:

232 GSSAPI user hpss@FIRE.CLEARLAKE.IBM.COM is authorized as hpss
230 User hpss@FIRE.CLEARLAKE.IBM.COM logged in as hpss.
Remote system type is UNIX.

Using binary mode to transfer files.

%% NOTE: FTP Daemon supports feature discovery **

**%% NOTE: Server supports Parallel Features e

Fkkk Auto-Parallel Substitution Enabled. ****

%* NOTE: Protocol set to PDATA_AND_MQVER **

**%% NOTE: Daemon does NOT support Transfer Agent

Pwidth set to default(1).

Multinode is Disabled.

ftp>

3.3.2. Parallel append - pappend

Synopsis

pappend local file [remote_file]

Description

The pappend command transfers a file from the local machine to HPSS. The transfer starts at

the end of the remote file and continues until the entire file is moved or until an error occurs.

Parameters

local_file. Identification of the file to transfer on the local machine.

remote_file. Optional file name to the remote file. If not supplied, then the remote (HPSS) file

name defaults to be the same as the local file name.

Return strings

Output shows the amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.
Network failures: data transfer malfunction.

Allocation failures: no space on remote machine for file.

39

Error codes may also be returned from HPSS. The most common error codes are:

» "-5":an I/O error occurred.
« "-28": no space remaining in the associated storage class.

See also
RFC-0959.

Examples

1. Append local file testfile to the same file name in the user’s HPSS home directory.
ftp> pappend testfile

2. Append local file testfile to HPSS file prod1 in the current working directory.
ftp> pappend testfile prodil

3.3.3. Parallel file store - pput
Synopsis
pput [-1 local_offset] [-r remote_offset] [-s size] local_file [remote_file]

Description

The pput command transfers a file from the local machine to HPSS. If offsets and size of the
transfer are not specified, the transfer starts at the beginning of the local file and continues until
the entire file is moved or until an error occurs. However, flexibility is provided to perform
partial file transfers by specifying local file offset, remote file offset, and size of transfer. The
local_offset, remote_offset, and size may be specified using a decimal and magnitude
representation string.

The normal pput command functions just like the standard FTP put command and transfers an
entire file.

Parameters

-1 local_offset. Optional byte offset into the local file where the transfer is to begin.

-r remote_offset. Optional byte offset into the remote file where the data is to be placed.
-s size. Optional byte size of the amount of data to transfer.

local_file. Identification of the file to transfer on the local machine.

remote_file. Optional file name to the remote (HPSS) file. If not supplied then the remote file
name defaults to be the same as the local file name.

Return strings

Output shows the amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.

Network failures: data transfer malfunction.

40

Allocation failures: no space on remote machine for file.
Error codes may also be returned from HPSS. The most common error codes are:

» "-5":an I/O error occurred.
+ "-28": no space remaining in the associated storage class.

See also
RFC-0959.

Examples

1. Transfer local file testfile to the user’s HPSS home directory.
ftp> pput testfile

2. Transfer local file testfile to HPSS file prod1 in the current working directory.
ftp> pput testfile prod1

3. Transfer 1 MB from offset 1 MB of local file testfile to offset 0 of HPSS file /home/bob/prod1.
ftp> pput -1 1048576 -r @ -s 1048576 testfile /home/bob/prodi

4. Transfer all local files which begin with "test" to the user’s HPSS home directory using a pipe
and tar (bundling).
ftp> pput " | tar cf - ./test*" my_test.tar

Q The pipe facility uses temporary files. It is strongly advised to configure a
location for temporary files used by the pipe facility.

3.3.4. Multiple parallel file store - mpput

Synopsis

mpput local_files

Description

The mpput command expands the files specified in the local files parameter at the local host
and copies the indicated files to HPSS. The mpput command functions just like the standard FTP
mput command.

Parameters

local files. Identification of the files to transfer on the local machine.

Return strings

Output shows the amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.
Network failures: data transfer malfunction.
Allocation failures: no space on remote machine for file.

Error codes may also be returned from HPSS. The most common error codes are:

41

» "-5": an I/O error occurred.
« "-28": no space remaining in the associated storage class.

See also
RFC-0959.

Examples
1. Transfer all local files in the current directory to the user’s HPSS home directory.
ftp> mpput *

2. Transfer all local files which begin with "test" in directory /usr/bob to the user’s HPSS home
directory.
ftp> led /usr/bob
ftp> mpput test*

3.3.5. Parallel file retrieval - pget

Synopsis

pget [-r remote_offset] [-1 local_offset] [-s size] remote_file [local file]

Description

The pget command transfers a file to the local machine from HPSS. If offsets and size of transfer
are not specified, the transfer starts at the beginning of the remote file and continues until the
entire file is moved or until an error occurs. However, flexibility is provided to perform partial
file transfers by specifying remote file offset, local file offset, and size of the transfer. The
local_offset, remote_offset, and size may be specified using a decimal and magnitude
representation string. See Allocating space for files - site allo64 for use of this notation.

The standard pget command transfers entire files similar to the standard FTP get command.

Parameters

-r remote_offset. Optional byte offset where the transfer is to begin in the remote file.
-1 local_offset. Optional parameter where the data is transferred in the local file.

-s size. Optional number of bytes to transfer.

remote_file. Identification of the file to transfer from the remote (HPSS) host.

local_file. Optional file name to the local file. If not supplied, then the local file name defaults to
be the same as the remote file name.

Return strings

Output shows the amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.

Network failures: data transfer malfunction.

42

Allocation failures: no space on local machine for file.
Error codes may also be returned from HPSS. The most common error code is:

e "-5":an I/O error occurred.

See also
RFC-0959.

Examples

1. Transfer HPSS file /home/bob/prod1 to the user’s local directory.
ftp> pget /home/bob/prod1

2. Transfer HPSS file prod1 in the current working directory to local file testfilel.
ftp> pget prodl testfilel

3. Transfer 1 MB from offset 0 of HPSS file /home/bob/prod1 to offset 1048576 of local file
testfile.
ftp> pget -r @ -1 1048576 -s 1048576 /home/bob/testfilel testfile

4. Transfer and untar a tar file into the user’s current working directory using a pipe and tar
(unbundling).
ftp> pget my_test.tar " | tar xf -"

Q The pipe facility uses temporary files. It is strongly advised to configure a
location for temporary files used by the pipe facility.

3.3.6. Multiple parallel file retrieval - mpget

Synopsis

mpget remote_files

Description

The mpget command expands the remote_files parameter at the remote (HPSS) host and copies
the indicated HPSS files to the current directory on the local host. The mpget command
functions just like the standard FTP mget command.

Parameters

remote_files. Identification of the files to transfer from the remote (HPSS) host.

Return strings

Output shows the amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.
Network failures: data transfer malfunction.
Allocation failures: no space on remote machine for file.

Error codes may also be returned from HPSS. The most common error code is:

43

e "-5":an I/O error occurred.

See also
RFC-0959.

Examples

1. Transfer all files in HPSS directory /home/bob to the user’s local directory.
ftp> cd /home/bob
ftp> mpget *

2. Transfer all HPSS files which begin with "test" in directory /home/bob to the user’s local
directory.
ftp> cd /home/bob
ftp> mpget test*

3.3.7. Local file append - Ifappend

Synopsis

Ifappend local file [remote_file]

Description

The lfappend is a performance-optimized PFTP client command used to append a "globally
available" file into HPSS using the "parallel" protocols. If the input file is not available to the
Mover machines (not "globally available"), the transfer will fail because the Movers will not be
able to locate the desired file. The difference between Ifappend and pappend is that the Movers
involved in the transfer will not use the network to move the data, thus providing improved
performance. The Mover machines must be correctly configured. The file:
/var/hpss/etc/hpss_mvr_localfilepath.conf must exist on each "local file"-aware Mover machine
and must contain entries specifying which directories are eligible for "local file" transport.

The Ifappend command transfers a file from the local machine to HPSS. The transfer starts at
the end of the remote file and continues until the entire file is moved or until an error occurs.

Parameters

local_file. Identification of the "globally available" file to transfer.

remote_file. Optional file name to the remote file. If not supplied, then the remote (HPSS) file
name defaults to be the same as the "globally available" file name.

Return strings

Output shows the amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.
Network failures: data transfer malfunction.
Allocation failures: no space on remote machine for file.

Error codes may also be returned from HPSS. The most common error codes are:

44

» "-5": an I/O error occurred.
« "-28": no space remaining in the associated storage class.

See also
RFC-0959.

Examples

1. Append "globally available" file testfile to the same file name in the user’s HPSS home
directory.
ftp> 1fappend testfile
... iInformation is returned by the PFTP daemon
ftp>

2. Append "globally available" file testfile to HPSS file prod1 in the current working directory.
ftp> 1fappend testfile prod1
... Information is returned by the PFTP daemon
ftp>

3.3.8. Local file store - Ifput

Synopsis:

Ifput [-1 local offset] [-r remote_offset] [-s size] local_file [remote._file]

Description

The Ifput is a performance-optimized PFTP client command used to transfer a "globally
available" file into HPSS using the "parallel" protocols. If the file is not available to the Mover
machines (not "globally available"), the transfer will fail because the Movers will not be able to
locate the desired file. The difference between lfput and pput is that the Movers involved in the
transfer will not use the network to move the data, thus providing improved performance. The
Mover machines must be correctly configured. The file
/var/hpss/etc/hpss_mvr_localfilepath.conf must exist on each "local file"-aware Mover machine
and must contain entries specifying which directories are eligible for "local file" transport.

If offsets and size of transfer are not specified, the transfer starts at the beginning of the local file
and continues until the entire file is moved or until an error occurs. However, flexibility is
provided to perform partial file transfers by specifying local file offset, remote file offset, and
size of the transfer. The local_offset, remote_offset, and size may be specified using a decimal and
magnitude representation string. See Allocating space for files - site allo64 for use of this
notation. The normal lfput command functions just like the standard FTP put command and
transfers an entire file.

Parameters

-1 local_offset. Optional byte offset into the "globally available" file where the transfer is to begin.
-r remote_offset. Optional byte offset into the remote file where the data is to be placed.
-s size. Optional byte size of the amount of data to transfer.

local file. Identification of the "globally available" file to transfer. (This must be available to

45

Mover machines.)

remote_file. Optional file name to the remote (HPSS) file. If not supplied then the remote file
name defaults to be the same as the "globally available" file name.

Return strings

Output shows amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.

Network failures: data transfer malfunction.

Allocation failures: no space on remote machine for file.

Error codes may also be returned from HPSS. The most common error codes are:

» "-5":an I/O error occurred.
+ "-28": no space remaining in the associated storage class.

See also
RFC-0959.

Examples

1. Transfer local file testfile in the current working directory of the client to the user’s HPSS
home directory.
ftp> cd ~
... iInformation is returned by the PFTP daemon
ftp> 1fput testfile
... iInformation is returned by the PFTP daemon
ftp>

2. Transfer local file testfile in the current working directory of the client to HPSS file prod1 in
the current working directory.
ftp> 1fput testfile prod1
... Information is returned by the PFTP daemon
ftp>

3. Transfer 1 MB from offset 1 MB of local file testfile in the current working directory of the
client to offset 0 of HPSS file /home/bob/prod1 with a new name testfile2.
ftp> 1fput -1 1048576 -r @ -s 1048576 testfile
/home/bob/prod1/testfile2
... information is returned by the PFTP daemon
ftp>

3.3.9. Local file retrieval - 1fget

Synopsis

Ifget [-r remote_offset] [-1 local_offset] [-s size] remote_file [local_file]

46

Description

The Ifget is a performance-optimized PFTP client command used to transfer an HPSS file into a
"globally available" file using the "parallel" protocols. If the current working directory or the
specified directory is not available to the Mover machines (not "globally available"), the transfer
will fail because the Movers will not be able to locate the desired file. The difference between
Ifget and pget is that the Movers involved in the transfer will not use the network to move the
data, thus providing improved performance. The Mover machines must be correctly configured.
The file: /var/hpss/etc/hpss_mvr_localfilepath.conf must exist on each "local file"-aware Mover
machine and must contain entries specifying which directories are eligible for "local file"
transport.

The lfget command transfers a file from HPSS to a "globally available" directory on the Mover
machines. If offsets and size of transfer are not specified, the transfer starts at the beginning of
the remote file and continues until the entire file is moved or until an error occurs. However,
flexibility is provided to perform partial file transfers by specifying remote file offset, local file
offset, and size of the transfer. The local_offset, remote_offset, and size may be specified using a
decimal and magnitude representation string. See Multiple local file store - mlfput for use of this
notation.

The standard lfget command transfers entire files similar to the standard FTP get command.

Parameters

-r remote_offset. Optional byte offset where the transfer is to begin in the remote file.
-1 local_offset. Optional parameter where the data is transferred in the local file.

-s size. Optional number of bytes to transfer.

remote_file. Identification of the file to transfer from the remote (HPSS) host.

local file. Optional file name to the local file. If not supplied, then the local file name defaults to
be the same as the remote file name.

Return strings

Output shows the amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.

Network failures: data transfer malfunction.

Allocation failures: no space on local machine for file.

Error codes may also be returned from HPSS. The most common error code is:

e "-5":an I/O error occurred.

See also
RFC-0959.

47

Examples

1. Transfer HPSS file /home/bob/prod1 to the user’s local directory.
ftp> 1fget /home/bob/prod1
... Information is returned by the PFTP daemon
ftp>

2. Transfer the HPSS file prod1 in the current working directory to local file testfile.
ftp> 1fget prodl testfilel
... Information is returned by the PFTP daemon
ftp>

3. Transfer the HPSS file testfile into the "globally available" directory /home/bob renaming the
file to testfile.
ftp> 1fget prod1 /home/bob/testfilel testfile
... iInformation is returned by the PFTP daemon
ftp>

4. Transfer 1 MB from offset 0 of HPSS file /home/bob/prod1 to offset 1048576 of local file
testfile.
ftp> 1fget -r @ -1 1048576 -s 1048576 /home/bob/testfilel testfile
... information is returned by the PFTP daemon
ftp>

3.3.10. Multiple local file store - mlfput

Synopsis

mlfput local files

Description

The mlfput is a performance-optimized PFTP client command used to transfer multiple "globally
available" files into HPSS using the "parallel” protocols. If the one or more files are not available
to the Mover machines (not "globally available"), the transfer will fail because the Movers will
not be able to locate the desired files. The difference between mlfput and mpput is that the
Movers involved in the transfer will not use the network to move the data, thus providing
improved performance. The Mover machines must be correctly configured. The file:
/var/hpss/etc/hpss_mvr_localfilepath.conf must exist on each "local file"-aware Mover machine
and must contain entries specifying which directories are eligible for "local file" transport.

The mlfput command expands the files specified in the local files parameter at the local host
and copies the indicated files to HPSS. The mlfput command functions just like the standard FTP
mput command.

Parameters

local files. Identification of the files to transfer on the local machine.

Return strings

Output shows the amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.

48

Network failures: data transfer malfunction.
Allocation failures: no space on remote machine for file.
Error codes may also be returned from HPSS. The most common error codes are:

» "-5": an I/O error occurred.
» "-28": no space remaining in the associated storage class.

See also
RFC-0959.

Examples

1. Transfer all "globally available" files in the current directory to the user’s HPSS home
directory.
ftp> cd ~
... information is returned by the PFTP daemon
ftp> prompt <== this toggles file prompting

ftp> mlfput *
... information is returned by the PFTP daemon
ftp>

2. Transfer all "globally available" files which begin with "test" in directory /usr/bob to the
user’s HPSS home directory.
ftp> cd ~
... Information is returned by the PFTP daemon
ftp> mlfput /usr/bob/test*
... Information is returned by the PFTP daemon
ftp>

3.3.11. Multiple local file retrieval - mlfget

Synopsis

mlfget remote_files

Description

The mlfget is a performance-optimized PFTP client command used to transfer an HPSS file into
a "globally available" file using the "parallel" protocols. If the current working directory or the
specified directory is not available to the Mover machines (not "globally available"), the transfer
will fail because the Movers will not be able to locate the desired file. The difference between
mlfget and mpget is that the Movers involved in the transfer will not use the network to move
the data, thus providing improved performance. The Mover machines must be correctly
configured. The file: /var/hpss/etc/hpss_mvr_localfilepath.conf must exist on each "local file"-
aware Mover machine and must contain entries specifying which directories are eligible for
"local file" transport.

The mlfget command expands the remote_files parameter at the remote (HPSS) host and copies
the indicated HPSS files to the current directory on the local host. The mlfget command

49

functions just like the standard FTP mget command.

Parameters

remote_files. Identification of the files to transfer from the remote (HPSS) host.

Return strings

Output shows the amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.

Network failures: data transfer malfunction.

Allocation failures: no space on remote machine for file.

Error codes may also be returned from HPSS. The most common error code is:

e "-5":an I/O error occurred.

See also
RFC-0959.

Examples

1. Transfer all files in HPSS directory /home/bob to the "globally available" current working
directory.
ftp> mlfget /home/bob/*
... information is returned by the PFTP daemon
ftp>

2. Transfer all HPSS files which begin with "test" in directory /home/bob to the "globally
available" current working directory.
ftp> mlfget /home/bob/test*
... Information is returned by the PFTP daemon
ftp>

3.3.12. Recursive commands - recursive

Synopsis

recursive mget | mput | mdelete dir_name

Description

The recursive command is used to recursively mget, mput, or mdelete a directory.

Parameters

mget | mput| mdelete. The recursive command to be performed. The commands perform similarly
to regular mget, mput, and mdelete, except they perform recursively on all the files and
subdirectories contained in the specified directory.

dir_name. The directory on which to perform the recursive action. For mget or mdelete, this will
be the remote directory to get or delete. For mput, this is the local directory to put.

50

Return strings

Output shows the amount of data transferred and any error conditions.

Error conditions

Connection failures: data transfer connection malfunction.

Network failures: data transfer malfunction.

Allocation failures: no space on remote machine for file.

Not Found failures: specified dir_name does not exist or is not a directory
Error codes may also be returned from HPSS. The most common error code is:

e "-5":an I/O error occurred.

See also

RFC-3659.
RFC-0959.

Examples
1. Transfer local directory my_dir1 and all of its contents to the user’s HPSS home directory.
ftp> recursive mput my_dir1

2. Transfer directory my_dir1 and all of its contents from the user’s HPSS home directory to the
local file system.
ftp> recursive mget my_dir1

3. Delete directory my_dir1 and all of its contents from the user’s HPSS home directory.
ftp> recursive mdelete my_dir1

3.3.13. Specify transfer stripe width - setpwidth

Synopsis

setpwidth stripe_width

Description

The setpwidth command is used to specify the size of the client-side stripe to the FTP client code.

Parameters

stripe_width. The width of the PFTP client-side stripe. The width can have a value of "1" through
"16". The default width is "1". The stripe width from the PFTP client perspective is the number of
client processes spawned to handle the data transfers. Stripe width from the server perspective
is the number of volumes the file is striped across.

For striped volumes, a general guideline would be to set stripe_width to an even divisor of the
number of volumes the file is striped across. For example, if the Class of Service for a file were
set up for a 4-way stripe, suggested values for stripe_width might be "2" or "4".

For non-striped volumes, the stripe_width indicates the number of network connections used for
the data transfer. Determine the maximum bandwidth achievable via a single network

31

connection on your system (iperf or other tools). Use a stripe_width value that employs a
sufficient number of network connections to fully utilize the device underlying the non-striped
volume.

If the stripe width of the file is unknown, consult your HPSS administrator to determine the
stripe width.

Return strings
Parallel stripe width set to [stripe width].

Error conditions
Bad width value [stripe width].

See also
RFC-0959.

Examples

1. Set the stripe width to "4".
ftp> setpwidth 4

3.3.14. Specify transfer block size - setpblocksize

Synopsis

setpblocksize block_size

Description

The setpblocksize command is used to specify the block size to be used for parallel transfers.
The block_size may be specified using a decimal or magnitude representation string. See
Allocating space for files - site allo64 for use of this notation. The maximum block size is 16 MB.

Parameters

block_size. The number of bytes to be transferred to each element of the stripe before data is
sent to the next element. The current allowable transfer sizes range from one byte through 16
MB. The default block size is 256 KB.

A general guideline would be to set block_size to the virtual volume block size. Consult your
HPSS administrator to determine the virtual volume block size.

Return strings
Parallel block size set to [block size].

Error conditions

Bad block size value [block size].

See also
RFC-0959.

32

Examples
Set the transfer block size to 8 MB.

1. ftp> setpblocksize 8388608
2. ftp> setpblocksize 8MB

3.3.15. Multinode enable or disable - multinode

Synopsis

multinode

Description

The multinode command is used to enable or disable the ability to perform a parallel file
transfer using multiple nodes. When multinode is enabled, the pftp_client will process the
multinode configuration file. If the process cannot obtain a single node to perform the parallel
transfer, then the transfer will occur using non-multinode parallel method.

Parameters

None.

Return strings

Processing the multinode list, please wait:..
Multinode is on.

or

Multinode is off.

Error conditions

Configuration file I/O problems: without nodes, files cannot be transferred using the multiple
node capability.

Examples

None.

3.3.16. Autoparallel enable or disable - autoparallel

Synopsis

autoparallel

Description

The autoparallel command is used to enable or disable the automatic mapping of non-parallel
commands to parallel commands; that is, get maps to pget. In autoparallel mode (enabled),
transfers involving files smaller than the "Auto Parallel Size" specification in the HPSS.conf will
not be auto-mapped.

33

Parameters

None.

Return string

Automatic Substitution of Parallel Commands Disabled
Daemon supports Parallel Features - Auto-Parallel Substitution Enabled

Error conditions

?Invalid command

See also
HPSS.conf(7)

Examples

1. ftp> autop
Automatic Substitution of Parallel Commands Disabled

or

Daemon supports Parallel Features - Auto-Parallel Substitution Enabled

3.3.17. Get current protocol mode - getprot

Synopsis

getprot

Description

Display the current parallel protocol mode.

Parameters

None.

Return strings
Current Parallel Protocol is PDATA and MOVER to MOVER

Current Parallel Protocol is PDATA ONLY
Current Parallel Protocol is PDATA PUSH

Error conditions

?Invalid command ==> Older Client?

See also

None.

Examples

1. ftp> getprot
Current Parallel Protocol is PDATA and MOVER to MOVER
Current Parallel Protocol is PDATA ONLY

54

Current Parallel Protocol is PDATA PUSH

3.3.18. Get tuning parameters - gettun

Synopsis
gettun hostname/IP Addr

Description

Display the transfer parameters between the client and other hosts (default is the PFTP daemon
host).

Parameters

None.

Return strings

See example below.

Error conditions

Warning Preceding without HPSS.conf (-2) (This may be observed at login time.)
HPSS.conf parsing errors.

See also

None.

Examples

1. ftp> gettun
Effective Tuning parameters from saux22 to sair@31
Using PDATA_AND_MOVER protocol
Using 4.1 Protocol
Parallel Transfer Size = 2147483647
Transfer Buffer Size = 16777216
Parallel Block Size = 262144

Parallel Network Width =1

No Interfaces Found (ret_code = -2)
Using Default Interface for 1 stripes(s)
Multinode is disabled

or
Multinode Enabled:
Processing the multinode list, please wait:..
Using 1 remote node(s) from the following:
Control Interface ==> Data Interface:
water ==> water

Using Network Options
Using "Default" destination characteristics

55

PdataSockBufSize = 1048576 based on user input
recv_socksize = send_socksize = 1048576 based on

PdataSockBufSize
Writesize = 524288

or

recv_socksize = 262144 based on Network Options
send_socksize = 262144 based on Network Options
PdataSockBufSize = 262144 based on send_socksize

RFC1323 1is turned on
TCPNoDelay is turned on

The use of "Parallel Pipes" should be discouraged; however, you may observe either
of the following two scenarios:
PipeFileSize TOO Large reset to 2147483647
ﬁ Pipe Files NOT supported on this machine- Open Failed 2
or
Pipe Files are supported on this machine
Pipe File = /copylvol/.pftp_pipes26404
Pipe File Size = 1073741824

3.3.19. Set the PDATA_ONLY protocol - pdata

Synopsis
pdata

Description
Explicitly request the PDATA_ONLY protocol.

Parameters

None.

Return strings
**** NOTE: Protocol set to PDATA_ONLY **** (at logon time)

215 Parallel protocol is PDATA_ONLY

Error conditions

?Invalid command ==> Older Client?

See also

None.

Examples

1. Set protocol to PDATA_ONLY (failure).
ftp> pdata
Server does NOT support command ==> Older Server?

36

?Invalid command ==> Older Client?
ftp>

3.3.20. Set the PDATA_PUSH protocol - pdatapush

Synopsis

pdatapush

Description
Explicitly request the PDATA_PUSH protocol.

Parameters

None.

Return strings

**** NOTE: Protocol set to PDATA_PUSH **** (at logon time)
215 Parallel protocol is PDATA_PUSH

Error conditions

?Invalid command ==> Older Client?

See also

None.

Examples

1. Set protocol to PDATA_PUSH (failure).
ftp> pdatapush
Server does NOT support command ==> Older Server?
?Invalid command ==> Older Client?
ftp>

3.3.21. Set the PDATA_AND_MOVER protocol - pmover

Synopsis

pmover

Description

Explicitly specify parallel transfers to use the PDATA_AND_MOVER protocol regardless of what is
specified in the HPSS. conf file.

Parameters

None.

Return strings
215 Parallel protocol is PDATA_AND_MOVER

Error conditions

Server does NOT support command ==> Older Server?

57

?Invalid command ==> Older Client?

See also
HPSS.conf(7)

Examples

1. Set PDATA_AND_MOVER protocol.
ftp> pmover
215 Parallel protocol is PDATA_AND_MOVER
ftp>

3.3.22. Set the socket buffer size - setsock

Synopsis

setsock SizeString

Description

Set the desired socket buffer size. This is useful when no HPSS.conf file exists or the client/Mover
combination is not in the HPSS.conf file. When entered without a SizeString, the command
returns the socket buffer size in effect.

Parameters

SizeString. For example, "1MB".

Return strings
Socket Buffer Size = 1048576.

Error conditions
PdataSockBufSize reset equal or below sb_max (1048576)

See also

None.

Example

1. Set socket buffer size (above system maximum).
ftp> setsock 4mb
PdataSockBufSize reset equal or below sb_max (1048576)
ftp>

2. Set socket buffer size.
ftp> setsock 512kb
ftp>

3. Set socket buffer size (no argument).
ftp> setsock
Socket Buffer Size = 524288.
ftp>

38

3.3.23. Set the transfer buffer size - setxfer

Synopsis

setxferbufsize SizeString

Description

Set the desired transfer buffer sizes. This is useful when no HPSS.conf file exists or the
client/daemon combination is not in the HPSS.conf file. When entered without a SizeString, the
command returns the transfer buffer size in effect.

Parameters

SizeString. For example, "4AMB".

Return strings
PdataBufferSize = 4194304

Error conditions

?Invalid command ==> 01d Client?

See also

None.

Examples

1. Set transfer buffer size (the maximum value is 32 MB).
ftp> setxfer 40MB
ftp>

2. Display effective transfer buffer size (no argument).
ftp> setxfer
PdataBufferSize = 33554432.
ftp>

39

Appendix A: Glossary of terms and

acronyms

ACL

ACSLS

ADIC

accounting

ACI

AIX

alarm

AML

AMS

ANSI
API

archive

ASLR

attribute

attribute change

audit (security)

60

Access Control List

Automated Cartridge System Library Software (Oracle
StorageTek)

Advanced Digital Information Corporation

The process of tracking system usage per user, possibly for
the purposes of charging for that usage. Also, a log record
type used to log accounting information.

AML Client Interface

Advanced Interactive Executive. An operating system
provided on many IBM machines.

A log record type used to report situations that require
administrator investigation or intervention.

Automated Media Library. A tape robot.
Archive Management Unit

American National Standards Institute
Application Program Interface

One or more interconnected storage systems of the same
architecture.

Address Space Layout Randomization

When referring to a managed object, an attribute is one
discrete piece of information, or set of related information,
within that object.

When referring to a managed object, an attribute change is
the modification of an object attribute. This event may result
in a notification being sent to SSM, if SSM is currently
registered for that attribute.

An operation that produces lists of HPSS log messages whose
record type is SECURITY. A security audit is used to provide a
trail of security-relevant activity in HPSS.

AV

bar code

BFS

bitfile

bitfile segment

Bitfile Service

BBTM

CAP

cartridge

class

Class of Service

cluster

Account Validation

An array of rectangular bars and spaces in a predetermined
pattern which represent alphanumeric information in a
machine-readable format (such as a UPC symbol).

HPSS Bitfile Service

A file stored in HPSS, represented as a logical string of bits
unrestricted in size or internal structure. HPSS imposes a
size limitation in 8-bit bytes based upon the maximum size
in bytes that can be represented by a 64-bit unsigned integer.

An internal metadata structure, not normally visible, used by
the Core Server to map contiguous pieces of a bitfile to
underlying storage.

Portion of the HPSS Core Server that provides a logical
abstraction of bitfiles to its clients.

Blocks Between Tape Marks. The number of data blocks that
are written to a tape virtual volume before a tape mark is
required on the physical media.

Cartridge Access Port

A physical media container, such as a tape reel or cassette,
capable of being mounted on and dismounted from a drive.
A fixed disk is technically considered to be a cartridge
because it meets this definition and can be logically mounted
and dismounted.

A type definition in Java. It defines a template on which
objects with similar characteristics can be built, and includes
variables and methods specific to the class.

A set of storage system characteristics used to group bitfiles
with similar logical characteristics and performance
requirements together. A Class of Service is supported by an
underlying hierarchy of storage classes.

The unit of storage space allocation on HPSS disks. The
smallest amount of disk space that can be allocated from a
virtual volume is a cluster. The size of the cluster on any
given disk volume is determined by the size of the smallest
storage segment that will be allocated on the volume, and
other factors.

61

configuration

Cos

control path

Core Server

CRC

CS
daemon
DAS

DB2

DCE

debug

delog

deregistration

descriptive name

device

directory

62

The process of initializing or modifying various parameters
affecting the behavior of an HPSS server or infrastructure
service.

Class of Service

For the SCSI PVR, this is a connection to the library for
sending commands. Control paths can be discovered using
device_scan.

An HPSS server which manages the name space and storage
for an HPSS system. The Core Server manages the name
space in which files are defined, the attributes of the files,
and the storage media on which the files are stored. The Core
Server is the central server of an HPSS system. Each storage
subsystem uses exactly one Core Server.

Cyclic Redundancy Check

Core Server

A UNIX program that runs continuously in the background.
Distributed AML Server

A relational database system, a product of IBM Corporation,
used by HPSS to store and manage HPSS system metadata.

Distributed Computing Environment

A log record type used to report internal events that can be
helpful in troubleshooting the system.

The process of extracting, formatting, and outputting HPSS
central log records. This process is obsolete in 7.4 and later
versions of HPSS. HPSS logs are now recorded as plain text.

The process of disabling notification to SSM for a particular
attribute change.

A human-readable name for an HPSS server.

A physical piece of hardware, usually associated with a
drive, that is capable of reading or writing data.

An HPSS object that can contain files, symbolic links, hard
links, and other directories.

dismount

DNS
DOE
DPF

drive

EB
EOF
EOM
ERA
ESCON

event

export

FC SAN
FIFO

file

file family

fileset

fileset ID

An operation in which a cartridge is either physically or
logically removed from a device, rendering it unreadable
and unwritable. In the case of tape cartridges, a dismount
operation is a physical operation. In the case of a fixed disk
unit, a dismount is a logical operation.

Domain Name Service
Department of Energy
Database Partitioning Feature

A physical piece of hardware capable of reading or writing
mounted cartridges. The terms device and drive are often
used interchangeably.

Exabyte (2%)

End of File

End of Media

Extended Registry Attribute
Enterprise System Connection

A log record type used to report informational messages (for
example, subsystem starting or subsystem terminating).

An operation in which a cartridge and its associated storage
space are removed from the HPSS system Physical Volume
Library. It may or may not include an eject, which is the
removal of the cartridge from its Physical Volume Repository.

Fiber Channel Storage Area Network
First in first out

An object than can be written to, read from, or both, with
attributes including access permissions and type, as defined
by POSIX (P1003.1-1990). HPSS supports only regular files.

An attribute of an HPSS file that is used to group a set of files
on a common set of tape virtual volumes.

A collection of related files that are organized into a single
easily managed unit. A fileset is a disjoint directory tree that
can be mounted in some other directory tree to make it
accessible to users.

A 64-bit number that uniquely identifies a fileset.

63

fileset name
file system ID
FTP

FSF

FSR

Gatekeeper

Gatekeeping Service

Gatekeeping Site Interface

Gatekeeping Site Policy

GB

GECOS

GID
GK
GSS
GUI
HA

HACMP

HADR
halt
HBA

HDM

64

A name that uniquely identifies a fileset.

A 32-bit number that uniquely identifies an aggregate.
File Transfer Protocol

Forward Space File

Forward Space Record

An HPSS server that provides two main services: the ability
to schedule the use of HPSS resources referred to as the
Gatekeeping Service, and the ability to validate user accounts
referred to as the Account Validation Service.

A registered interface in the Gatekeeper that provides a site
the mechanism to create local policy on how to throttle or
deny create, open and stage requests and which of these
request types to monitor.

The APIs of the gatekeeping site policy code.

The gatekeeping shared library code written by the site to
monitor and throttle create, open, and/or stage requests.

Gigabyte (2*)

The comment field in a UNIX password entry that can
contain general information about a user, such as office or
phone number.

Group Identifier
Gatekeeper

Generic Security Service
Graphical User Interface
High Availability

High Availability Clustered Multi-Processing - A software
package used to implement high availability systems.

DB2 High Availability Disaster Recovery
A forced shutdown of an HPSS server.
Host Bus Adapter

Shorthand for HPSS/DMAP.

hierarchy
HPSS

HPSS-only fileset

HTP
IBM
ID
IDE
IEEE

import

I/0

IOD/IOR

IP

IRIX
JRE
junction
KB

KDC
LAN
LANL

latency

LBP

LDAP

See storage hierarchy.
High Performance Storage System

An HPSS fileset that is not linked to an external file system
(such as XFS).

HPSS Test Plan

International Business Machines Corporation
Identifier

Integrated Drive Electronics

Institute of Electrical and Electronics Engineers

An operation in which a cartridge and its associated storage
space are made available to the HPSS system. An import
requires that the cartridge has been physically introduced
into a Physical Volume Repository (injected). Importing the
cartridge makes it known to the Physical Volume Library.

Input/Output

I/0 Descriptor/I/O Reply. Structures used to send control
information about data movement requests in HPSS and
about the success or failure of the requests.

Internet Protocol

SGI’s implementation of UNIX
Java Runtime Environment

A mount point for an HPSS fileset.
Kilobyte (2'°)

Key Distribution Center

Local Area Network

Los Alamos National Laboratory

For tape media, the average time in seconds between the
start of a read or write request and the time when the drive
actually begins reading or writing the tape.

Logical Block Protection

Lightweight Directory Access Protocol

65

LFT
LLNL
LMU

Location Service

log record

log record type

logging service

LS
LSM

LTO

LUN
LVM
MAC

managed object

MB
MBS

metadata

method

66

Local File Transfer
Lawrence Livermore National Laboratory
Library Management Unit

A module within the HPSS Core Server used to help clients
locate the appropriate Core Server and/or other HPSS server
to use for a particular request.

A message generated by an HPSS application and handled
and recorded by the HPSS logging subsystem.

A log record may be of type alarm, event, info, debug,
request, security, trace, or accounting.

An HPSS infrastructure service consisting of the logging
subsystem and one or more logging policies. A default
logging policy can be specified, which will apply to all
servers, or server-specific logging policies may be defined.

Location Service
Library Storage Module

Linear Tape-Open. A halfsinch open tape technology
developed by IBM, HP, and Seagate.

Logical Unit Number
Logical Volume Manager
Mandatory Access Control

A programming data structure that represents an HPSS
system resource. The resource can be monitored and
controlled by operations on the managed object. Managed
objects in HPSS are used to represent servers, drives, storage
media, jobs, and other resources.

Megabyte (2*°)
Media Block Size

Control information about the data stored under HPSS, such
as location, access times, permissions, and storage policies.
Most HPSS metadata is stored in a DB2 relational database.

A Java function or subroutine.

migrate

Migration/Purge Server

MM

mount

mount point

Mover

MPS
MVR

NASA

Name Service

name space

NERSC

NIS

NLS

notification

NS

NSL

To copy file data from a level in the file’s hierarchy onto the
next lower level in the hierarchy.

An HPSS server responsible for supervising the placement of
data in the storage hierarchies based upon site-defined
migration and purge policies.

Metadata Manager. A software library that provides a
programming API to interface HPSS servers with the DB2
programming environment.

An operation in which a cartridge is either physically or
logically made readable/writable on a drive. In the case of
tape cartridges, a mount operation is a physical operation. In
the case of a fixed disk unit, a mount is a logical operation.

A place where a fileset is mounted in the XFS and HPSS name
spaces.

An HPSS server that provides control of storage devices and
data transfers within HPSS.

Migration/Purge Server
Mover
National Aeronautics and Space Administration

The portion of the Core Server that provides a mapping
between names and machine-oriented identifiers. In
addition, the Name Service performs access verification and
provides the Portable Operating System Interface (POSIX).

The set of name-object pairs managed by the HPSS Core
Server.

National Energy Research Supercomputer Center
Network Information Service
National Language Support

A notice from one server to another about a noteworthy
occurrence. HPSS notifications include notices sent from
other servers to SSM of changes in managed object
attributes, changes in tape mount information, and log
messages of type alarm or event.

HPSS Name Service

National Storage Laboratory

67

object
ORNL
(0}

0S/2

PB
PFTP
PFTPD

physical volume

Physical Volume Library

Physical Volume Repository

PIO
PIOFS

POSIX

purge

purge lock

PV
PVL
PVM

PVR

68

See managed object.
Oak Ridge National Laboratory
Operating System

The operating system (multi-tasking, single user) used on the
AMU controller PC.

Petabyte (2*°)
Parallel File Transfer Protocol
PFTP Daemon

An HPSS object managed jointly by the Core Server and the
Physical Volume Library that represents the portion of a
virtual volume. A virtual volume may be composed of one or
more physical volumes, but a physical volume may contain
data from no more than one virtual volume.

An HPSS server that manages mounts and dismounts of HPSS
physical volumes.

An HPSS server that manages the robotic agent responsible
for mounting and dismounting cartridges or interfaces with
the human agent responsible for mounting and dismounting
cartridges.

Parallel I/O
Parallel I/O File System

Portable Operating System Interface (for computer
environments).

Deletion of file data from a level in the file’s hierarchy after
the data has been duplicated at lower levels in the hierarchy
and is no longer needed at the deletion level.

A lock applied to a bitfile which prohibits the bitfile from
being purged.

Physical Volume
Physical Volume Library
Physical Volume Manager

Physical Volume Repository

RAID
RAIT
RAM
RAO

reclaim

registration

reinitialization

repack

request

RISC
RPC
RSF
RSR
SCSI

security

SGI

shelf tape

shutdown

Redundant Array of Independent Disks
Redundant Array of Independent Tapes
Random Access Memory
Recommended Access Order

The act of making previously written but now empty tape
virtual volumes available for reuse. Reclaimed tape virtual
volumes are assigned a new Virtual Volume ID, but retain
the rest of their previous characteristics. Reclaim is also the
name of the utility program that performs this task.

The process by which SSM requests notification of changes to
specified attributes of a managed object.

An HPSS SSM administrative operation that directs an HPSS
server to reread its latest configuration information, and to
change its operating parameters to match that configuration,
without going through a server shutdown and restart.

The act of moving data from a virtual volume onto another
virtual volume with the same characteristics with the
intention of removing all data from the source virtual
volume. Repack is also the name of the utility program that
performs this task.

A log record type used to report some action being
performed by an HPSS server on behalf of a client.

Reduced Instruction Set Computer/Cycles
Remote Procedure Call

Reverse Space File

Reverse Space Record

Small Computer Systems Interface

A log record type used to report security-related events (for
example, authorization failures).

Silicon Graphics

A cartridge which has been physically removed from a tape
library but whose file metadata still resides in HPSS.

An HPSS SSM administrative operation that causes a server
to stop its execution gracefully.

69

sink

SM

SMC
SME
SNL

SOID

source

SP
SS
SSD
SSH
SSI
SSM

SSM session

SSMSM

stage

start-up

info

STK

70

The set of destinations to which data is sent during a data
transfer, such as disk devices, memory buffers, or network
addresses.

System Manager

SCSI Medium Changer
Subject Matter Expert

Sandia National Laboratories

Storage Object ID. An internal HPSS storage object identifier
that uniquely identifies a storage resource. The SOID
contains a unique identifier for the object, and a unique
identifier for the server that manages the object.

The set of origins from which data is received during a data
transfer, such as disk devices, memory buffers, or network
addresses.

Scalable Processor

HPSS Storage Service

Solid State Drive

Secure Shell

Storage Server Interface
Storage System Management

The environment in which an SSM user interacts with the
SSM System Manager to monitor and control HPSS. This
environment may be the graphical user interface provided
by the hpssgui program, or it may be the command-line user
interface provided by the hpssadm program.

Storage System Management System Manager

To copy file data from a level in the file’s hierarchy onto the
top level in the hierarchy.

An HPSS SSM administrative operation that causes a server
to begin execution.

A log record type used to report file staging and other kinds
of information.

Storage Technology Corporation (Oracle StorageTek)

storage class

storage hierarchy

storage level

storage map

storage segment

Storage Service

storage subsystem

Storage System Management

stripe length

stripe width

System Manager

An HPSS object used to group storage media together to
provide storage for HPSS data with specific characteristics.
The characteristics are both physical and logical.

An ordered collection of storage classes. The hierarchy
consists of a fixed number of storage levels numbered from
level 1 to the number of levels in the hierarchy, with the
maximum level being limited to 5 by HPSS. Each level is
associated with a specific storage class. Migration and stage
commands result in data being copied between different
storage levels in the hierarchy. Each Class of Service has an
associated hierarchy.

The relative position of a single storage class in a storage
hierarchy. For example, if a storage class is at the top of a
hierarchy, the storage level is 1.

An HPSS object managed by the Core Server to keep track of
allocated storage space.

An HPSS object managed by the Core Server to provide
abstract storage for a bitfile or parts of a bitfile.

The portion of the Core Server which provides control over a
hierarchy of virtual and physical storage resources.

A portion of the HPSS name space that is managed by an
independent Core Server and (optionally) Migration/Purge
Server.

An HPSS component that provides monitoring and control of
HPSS via a windowed operator interface or command-line
interface.

The number of bytes that must be written to span all the
physical storage media (physical volumes) that are grouped
together to form the logical storage media (virtual volume).
The stripe length equals the virtual volume block size
multiplied by the number of physical volumes in the stripe
group (that is, stripe width).

The number of physical volumes grouped together to
represent a virtual volume.

The Storage System Management (SSM) server. It
communicates with all other HPSS components requiring
monitoring or control. It also communicates with the SSM
graphical user interface (hpssgui) and command line
interface (hpssadm).

71

TB
TCP/IP
TDS
TI-RPC

trace

transaction

TSA/MP
TSM
UDA
UDP
UID
UPC
UuID
VPN

virtual volume

virtual volume block size

72

Terabyte (2*)

Transmission Control Protocol/Internet Protocol
Tivoli Directory Server
Transport-Independent-Remote Procedure Call

A log record type used to record procedure entry/exit events
during HPSS server software operation.

A programming construct that enables multiple data
operations to possess the following properties:

* All operations commit or abort/roll-back together such
that they form a single unit of work.

* All data modified as part of the same transaction are
guaranteed to maintain a consistent state whether the
transaction is aborted or committed.

 Data modified from one transaction are isolated from
other transactions until the transaction 1is either
committed or aborted.

* Once the transaction commits, all changes to data are
guaranteed to be permanent.

Tivoli System Automation for Multiplatforms
Tivoli Storage Manager

User-defined Attribute

User Datagram Protocol

User Identifier

Universal Product Code

Universal Unique Identifier

Virtual Private Network

An HPSS object managed by the Core Server that is used to
represent logical media. A virtual volume is made up of a
group of physical storage media (a stripe group of physical
volumes).

The size of the block of data bytes that is written to each
physical volume of a striped virtual volume before switching
to the next physical volume.

XDSM

XFS

XML

Virtual Volume

The Open Group’s Data Storage Management standard. It
defines APIs that use events to notify Data Management
applications about operations on files.

A file system created by SGI available as open source for the
Linux operating system.

Extensible Markup Language

73

Appendix B: References

File Transfer Protocol, RFC-0959, October 1985.
HPSS Error Manual.
HPSS Programmer’s Reference.

HPSS Admin Guide.

ik W M P

Installing, Managing, and Using the IBM AIX Parallel I/O File System, Document Number
H34- 6065-00.

6. POSIX 1003.1-1990 Tar Standard.

74

Appendix C: Developer acknowledgments

HPSS is a product of a government-industry collaboration. The project approach is based on the
premise that no single company, government laboratory, or research organization has the ability to
confront all of the system-level issues that must be resolved for significant advancement in high-
performance storage system technology.

HPSS development was performed jointly by IBM Worldwide Government Industry, Lawrence
Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National
Laboratory, NASA Langley Research Center, Oak Ridge National Laboratory, and Sandia National
Laboratories.

We would like to acknowledge Argonne National Laboratory, the National Center for Atmospheric
Research, and Pacific Northwest Laboratory for their help with initial requirements reviews.

We also wish to acknowledge Cornell Information Technologies of Cornell University for providing
assistance with naming service and transaction management evaluations and for joint
developments of the Name Service.

In addition, we wish to acknowledge the many discussions, design ideas, implementation and
operation experiences we have shared with colleagues at the National Storage Laboratory, the IEEE
Mass Storage Systems and Technology Technical Committee, the IEEE Storage System Standards
Working Group, and the storage community at large.

We also wish to acknowledge the Cornell Theory Center and the Maui High Performance Computer
Center for providing a test bed for the initial HPSS release.

We also wish to acknowledge Gleicher Enterprises, LLC for the development of the HSI, HTAR, and
Transfer Agent client applications.

Finally, we wish to acknowledge CEA-DAM (Commissariat a 1'Energie Atomique - Centre
d'Etudes de Bruyeres-le-Chatel) for providing assistance with development of NFS V3 protocol
support.

75

	HPSS User’s Guide
	Table of Contents
	Chapter 1. Overview
	1.1. User interfaces
	1.1.1. File Transfer Protocol (FTP)
	1.1.2. Parallel FTP (PFTP)
	1.1.3. API Tools
	1.1.4. HPSS Virtual File System (VFS) interface

	1.2. Storage concepts
	1.2.1. Class of Service (COS)
	1.2.2. Storage class
	1.2.3. Storage hierarchy
	1.2.4. File family

	1.3. Interface usage considerations
	1.3.1. Possible reasons for using FTP
	1.3.2. Possible reasons for using PFTP

	1.4. User IDs
	1.5. User accounts

	Chapter 2. File Transfer Protocol (FTP)
	2.1. FTP site (and quote) commands
	2.1.1. Aborting a transfer by request ID - abortreq
	2.1.2. Allocating space for files - site allo64
	2.1.3. Changing a file’s group by ID - chgid
	2.1.4. Changing a file’s group by name - chgrp
	2.1.5. Changing a file’s permissions - chmod
	2.1.6. Changing a file’s owner by name - chown
	2.1.7. Changing a file’s owner by ID - chuid
	2.1.8. Generate a request ID that will be used on a future transfer - genreqid
	2.1.9. Getting the account ID of a file or session - getacct
	2.1.10. Getting the file family of a file - getfam
	2.1.11. Listing supported server features - feat
	2.1.12. Listing or setting idle time
	2.1.13. Provide an easily parseable set of file facts - mlst
	MLST options
	MLST HPSS-specific facts

	2.1.14. File listings for files newer than a specified date
	2.1.15. Modify server command behavior - opts
	2.1.16. Toggle display of request ID during transfers - reportreqid
	2.1.17. Staging a batch of files recursively - rstagebatch
	2.1.18. Setting the account ID of a file - setacct
	2.1.19. Specifying a file’s Class of Service - setcos
	2.1.20. Specify that write operations should stop on EOM
	2.1.21. Specifying a file’s file family - setfam
	2.1.22. Specifying a file’s file checksum - sethash
	2.1.23. Staging a file - stage
	2.1.24. Staging a batch of files - stagebatch
	2.1.25. Creating a symbolic link - symlink
	2.1.26. Retrieve a UDA attribute
	2.1.27. Set a UDA attribute
	2.1.28. Setting the desire wait options (for migrated files) - wait
	2.1.29. Changing the default umask

	2.2. List directory extensions

	Chapter 3. Parallel File Transfer Protocol (PFTP)
	3.1. Parallel FTP client transfers
	3.1.1. Parallel FTP client/server configuration
	HPSS.conf file
	Local file functions

	3.2. PFTP site (and quote) commands
	3.2.1. Listing or setting HPSS ACLs
	3.2.2. Determining or setting buffer sizes [GridFTP]
	3.2.3. Reading configuration options for the PFTP server
	3.2.4. File listings for files newer than a specified date
	3.2.5. Perform media timing (eliminating the network transfer time)

	3.3. Additional PFTP commands
	3.3.1. General login messages (examples)
	3.3.2. Parallel append - pappend
	3.3.3. Parallel file store - pput
	3.3.4. Multiple parallel file store - mpput
	3.3.5. Parallel file retrieval - pget
	3.3.6. Multiple parallel file retrieval - mpget
	3.3.7. Local file append - lfappend
	3.3.8. Local file store - lfput
	3.3.9. Local file retrieval - lfget
	3.3.10. Multiple local file store - mlfput
	3.3.11. Multiple local file retrieval - mlfget
	3.3.12. Recursive commands - recursive
	3.3.13. Specify transfer stripe width - setpwidth
	3.3.14. Specify transfer block size - setpblocksize
	3.3.15. Multinode enable or disable - multinode
	3.3.16. Autoparallel enable or disable - autoparallel
	3.3.17. Get current protocol mode - getprot
	3.3.18. Get tuning parameters - gettun
	3.3.19. Set the PDATA_ONLY protocol - pdata
	3.3.20. Set the PDATA_PUSH protocol - pdatapush
	3.3.21. Set the PDATA_AND_MOVER protocol - pmover
	3.3.22. Set the socket buffer size - setsock
	3.3.23. Set the transfer buffer size - setxfer

	Appendix A: Glossary of terms and acronyms
	Appendix B: References
	Appendix C: Developer acknowledgments

