
HPSSFS-FUSE Administrator’s Guide
High Performance Storage System, version , 03 October 2022

HPSSFS-FUSE Administrator’s Guide
High Performance Storage System, version , 03 October 2022

iii

Table of Contents
 .. v
1. Terminology ... 1
2. Overview .. 2
3. Availability .. 4

3.1. Prerequisites .. 4
3.2. Upgrading from HPSSFS-VFS .. 4

4. Concepts ... 10
4.1. HPSS and the Nature of Hierarchical Storage ... 10
4.2. Architecture ... 11
4.3. How It Works ... 13
4.4. Supported Functionality and Limitations ... 13

5. Tuning & Troubleshooting .. 16
5.1. Expectations .. 16
5.2. Testing Procedures ... 16
5.3. Tuning Concepts ... 17
5.4. Troubleshooting .. 19
5.5. Special Notes .. 21

6. Unprivileged Mounts ... 22
7. Uses .. 23

7.1. General .. 23
7.2. SAMBA .. 24
7.3. NFS ... 25
7.4. Secure FTP ... 25
7.5. Apache .. 26

8. Mount Options ... 27
8.1. Credentials .. 27
8.2. HPSS Options ... 27
8.3. Checksum Options .. 28
8.4. Other HPSSFS-FUSE Options ... 29
8.5. FUSE Options ... 31
8.6. Kernel Options .. 31

9. Extensions .. 33
9.1. ioctl(2) Interface ... 33
9.2. fallocate(2) ... 51
9.3. Linux Extended Attributes ... 51
9.4. Checksum .. 56
9.5. Auto Purge Lock .. 61
9.6. POSIX.1e Draft ACLs .. 61
9.7. ID Mapping .. 63

10. References .. 65
11. Trademarks .. 66

iv

List of Figures
4.1. HPSSFS-FUSE Components .. 12

v

Copyright notification. Copyright © 2015-2022 International Business Machines Corporation,
The Regents of the University of California, Triad National Security, LLC, Lawrence Livermore
National Security, LLC, National Technology & Engineering Solutions of Sandia, LLC, and UT-
Battelle.

All rights reserved.

Portions of this work were produced by Lawrence Livermore National Security, LLC, Lawrence
Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344 with the
U.S. Department of Energy (DOE); by the University of California, Lawrence Berkeley National
Laboratory (LBNL) under Contract No. DE-AC02-05CH11231 with DOE; by Triad National
Security, LLC, Los Alamos National Laboratory (LANL) under Contract No. 89233218CNA000001
with DOE; by National Technology & Engineering Solutions of Sandia, LLC (NTESS), Sandia
National Laboratories (SNL) under Contract No. DE-NA0003525 with DOE; and by UT-Battelle, Oak
Ridge National Laboratory (ORNL) under Contract No. DE-AC05-00OR22725 with DOE. The U.S.
Government has certain reserved rights under its prime contracts with the Laboratories.

DISCLAIMER. Portions of this software were sponsored by an agency of the United States
Government. Neither the United States, DOE, The Regents of the University of California, Triad
National Security, LLC, Lawrence Livermore National Security, LLC, National Technology &
Engineering Solutions of Sandia, LLC, UT-Battelle, nor any of their employees, makes any warranty,
express or implied, or assumes any liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights.

Trademark usage. High Performance Storage System is a trademark of International Business
Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

IBM and Db2 are trademarks or registered trademarks of International Business Machines
Corporation.

UNIX is a registered trademark of the Open Group.

Linux is a registered trademark of Linus Torvalds in the United States and other countries.

1

Chapter 1. Terminology
This document uses the following terminology:

Term Description

FUSE Filesystem in USErspace

HPSSFS-FUSE High Performance Storage System™ File System FUSE interface

HPSSFS-VFS High Performance Storage System File System (colloquially known as "Kernel
VFS")

HPSSFSD HPSSFS userspace daemon

HPSSFS-LKM HPSSFS Linux kernel module

2

Chapter 2. Overview
The High Performance Storage System File System FUSE (HPSSFS-FUSE) interface provides users
with a standard POSIX® filesystem view of HPSS™ files. Filesystem in Userspace (FUSE) is a
mechanism that allows virtual filesystems to be implemented in userspace.

The HPSSFS-FUSE interface is supported only on Red Hat® Enterprise Linux® (RHEL®) 1 It
enables HPSS to function as an additional supported filesystem type for Linux users. It allows users
to access HPSS-resident files with standard POSIX semantics employed by local Linux filesystems,
such as ext3 and network filesystems such as NFS. Linux users can mount an HPSS directory, traverse
the directory structure, and access files as though operating on a local Linux filesystem. Access is
achieved by means of POSIX function calls, such as open(2), read(2), write(2), and UNIX®
commands such as cp(1). Like NFS, HPSSFS-FUSE does not require local storage resources, but is
rather a convenient interface to HPSS.

The HPSSFS-FUSE interface enables existing software to access HPSS files without modification.
For example, agent software, such as SAMBA™, Secure FTP, Apache®, and even native Linux NFS
may be set up to access HPSS files using the HPSSFS-FUSE interface. Thus, the HPSSFS-FUSE
interface becomes a means to utilize a wide variety of agents for local and remote network-connected
users. Multiple agents may be employed, and even multiple instances of the same agent. For example,
a site may employ several agent computers providing NFS and several others providing SAMBA.
However, in most situations, the use of multiple agent computers will not be necessary.

Thus, the HPSSFS-FUSE interface serves as a high-performance, virtually-local interface for trusted
Linux client nodes, such as those in a high-performance computational cluster. At the same time, it
can serve as a convenient means of extending HPSS access to users outside of the main cluster, with
security performed by agent software.

Warning

The HPSSFS-FUSE interface does not change the nature of the underlying HPSS hierarchical
storage management software. The intention of HPSSFS-FUSE is to provide a convenient
interface for importing and retrieving files, not to facilitate real-time file editing. It is important
to understand the limitations of the underlying HPSS system still apply when using HPSSFS-
FUSE.

Most HPSS sites are set up to migrate less recently used files to tape. Although the HPSSFS-FUSE
interface does employ local caching and readahead logic to enhance performance, the overall
operational concept for the system must take into account the latency of accessing files from tape.

HPSS offers optional SAN enablement, referred to in HPSS documentation as HPSS 3rd Party SAN
(SAN3P). SAN3P enables data to move between clients and HPSS disk without passing through
an intermediate computer, but under the control of HPSS. SAN3P therefore can provide significant
throughput advantages for sequential transfer of data between clients and HPSS disk. HPSSFS-FUSE
supports SAN3P transfers through HPSS, see san flag in mount options.

This document is intended to provide administrators and sophisticated ("power") users with
information on the installation, tuning, and use of HPSSFS-FUSE. Limitations as well as features of

1HPSSFS-FUSE is only officially supported on RHEL® (Intel® and PowerPC® versions.). Minimal testing has been performed
on all major Linux distributions (Arch Linux™, CentOS™, Debian®, Fedora®, Gentoo®, Linux Mint™, Mageia™, openSUSE®,
Oracle® Linux, slackware®, SUSE®, and Ubuntu®), but only RHEL goes through a full testing cycle.

Overview

3

the HPSSFS-FUSE interface are explained so that existing best practices can be employed and new
best practices discovered.

4

Chapter 3. Availability
HPSSFS-FUSE is available as a separate package from HPSS. It can be obtained from your HPSS
support representative.

3.1. Prerequisites
This section describes the prerequisite software packages required by HPSSFS-FUSE and provides
information to obtain them. Refer to the HPSSFS-FUSE Release Notes for specific versions.

Prerequisite Description

GCC Freely available C/C++ compiler used to generate the HPSSFS application.

FUSE (libfuse) One of the two parts of the FUSE system, libfuse provides the interface for
communicating with the FUSE kernel module.

HPSS Client
Library

Interface for communicating with the HPSS system.

FUSE kernel
module

Provided as part of the regular kernel repositories, the FUSE kernel module exposes
file system requests to be handled by custom file systems.

libattr Provides library functions for manipulating extended attributes.

libacl Provides library functions for manipulating access control lists.

OpenSSL Open source library which, among other things, provides a cryptography library
used for generating checksums.

3.2. Upgrading from HPSSFS-VFS

3.2.1. RPM Replacement
HPSSFS-FUSE is designed to replace HPSSFS-VFS. Consequently, the hpssfs-fuse RPM conflicts
with the hpssfs and hpssfs-lkm RPMs, which must be uninstalled prior to installing the hpssfs-fuse
RPM.

3.2.2. Mount Option Differences
See the Mount Options section for more specific information.

Availability

5

New HPSSFS-FUSE Options

These are options that are specific to HPSSFS-FUSE and differ from HPSSFS-VFS.

Option Description

acl, noacl These options enable and disable POSIX ACLs, which remain unavailable with
HPSSFS-VFS.

attrtimeo This option consolidates HPSSFS-VFS’s acregtimeo and acdirtimeo options.

auth This option replaces HPSSFS-VFS’s keytab option in order to better reflect its
meaning.

authmech This option replaces HPSSFS-VFS’s auth option in order to better reflect its
meaning.

authtype This option replaces HPSSFS-VFS’s keytype option in order to better reflect its
meaning.

autopurgelock This option specifies the maximum size of files to auto purge lock. See Auto Purge
Lock for more specific information.

ckstyle This option changes where checksum metadata is stored (UDA and/or File Hash).
The HPSS File Hash feature remains unavailable to HPSSFS-VFS.

entrytimeo This option specifies the cache timeout for names.

nfs4 This option provides optimizations for NFSv4 exported HPSSFS-FUSE mount
points. See NFS for more specific information.

shm, noshm These options enable shared memory data transfers between HPSSFS-FUSE mount
points and HPSS Movers, which were previously unavailable with HPSSFS-VFS.

stagetimeo This option replaces HPSSFS-VFS’s offlnsecs option in order to reflect its meaning
more clearly.

stream,
nostream

These options replace HPSSFS-VFS’s rpages, wpages, and iomax mount options.
nostream is equivalent to stream=0, which forces all I/O to be unbuffered. The
value is measured in megabytes instead of pages.

Availability

6

FUSE-Specific Options

These are options which are common to all FUSE filesystems.

Option Description

allow_other,
allow_root

In order to mimic the previous HPSSFS-VFS’s behavior, HPSSFS-FUSE mount
points should be mounted by the root user and use the allow_other mount option.
See the Unprivileged Mounts section for more specific information.

auto_unmount If the HPSSFS-FUSE process crashes or is killed or otherwise dies, the mount point
will automatically be unmounted. The default behavior is to remain mounted, and all
subsequent requests to that mount point will fail.

debug This option conflicts with HPSSFS-VFS’s debug option, and so its meaning has
been removed from HPSSFS-FUSE and now is passed to FUSE itself.

max_backgroundThis option controls the number of background threads available for readahead and
asynchronous I/O operations. The default value is 100.

congestion_thresholdThis option controls the number of threads required to be busy before the file system
is considered congestion. The default value is 75% of the max_background value.

nonempty If the local mount directory is not empty, this option will allow the mount to
succeed. The default behavior is to fail mounts on non-empty directories.

readdirplus This option allows FUSE to collect directory entries and their attributes together. It
is similar to HPSSFS-VFS’s rattr option.

Availability

7

Removed Mount Options

These options were removed or replaced in HPSSFS-FUSE.

Option Description

acregtimeo,
acdirtimeo

These options are replaced by attrimeo.

auth This option previously specified the authentication mechanism. It has been replaced
with the authmech option.

debug This option previously specified a level of debug information to log. Since FUSE
itself has a debug option, this option refers to that instead. All of HPSSFS-FUSE’s
logging is controlled by the trace option.

fcsize This option previously specified the size of files (in bytes) that will have all data
cached on first access. There is no mechanism to do this in earlier versions of FUSE,
so this feature may be added in a future release, supporting current versions of
FUSE.

keytab This option previously specified the HPSS authenticator. Since the authenticator is
not necessarily a keytab (it can be a keyfile or password, for example), it has been
replaced with the auth option (short for authenticator).

keytype This option previously specified the HPSS authenticator type. It has been replaced
with the authtype option.

maxrqst This option previously specified the maximum number of concurrent requests. The
FUSE library spawns threads to service requests, so this option is obsolete and
consequently has been removed.

nflushd This option previously specified the number of kernel threads used to flush data.
Since HPSSFS-FUSE is implemented in userspace only, every open file gets its own
flush thread, and this option has been removed.

offlnsecs This option has been replaced with the stagetimeo option.

rattr This option previously specified whether to fetch attributes along with directory
entries (similar to the readdirplus option). However, this has been replaced with
a heuristic that uses access patterns to determine the behavior. Consequently, this
option has been removed.

rpages,
wpages, iomax

These options have been replaced with the stream option.

rtimeo, wtimeo These options previously specified how many seconds to wait for additional page
requests before issuing I/O to HPSS. Since the FUSE kernel module handles the
page cache, these options are obsolete and consequently have been removed.

stack This option previously specified the stack size for threads. Since the FUSE library
spawns threads as necessary to service requests (as opposed to how HPSSFSD
preallocated all service threads), this option is obsolete, and consequently has been
removed. Any requests which fail to spawn threads due to memory limitations will
receive out-of-memory errors.

wtrytimeo This option previously specified how many seconds to continue trying failed writes.
Since we must send a response to the FUSE kernel module, write failures are never

Availability

8

Option Description

retried, and this option is obsolete and consequently has been removed. Write
failures are immediately returned to the end-application.

Availability

9

3.2.3. /proc Filesystem
HPSSFS-VFS provided a /proc filesystem interface for inspecting various stats for a particular mount
point. The information was located in the directory /proc/fs/hpssfs/<pid> and contained the
following files:

File Description

info Provided a list of settings and other information

opens Provided a list of open files

io Provided a list of pending I/O

requests Provided a list of pending requests

trace Yielded current trace value; writable in order to change the trace value at runtime

HPSSFS-FUSE is unable to create entries in the /proc filesystem (this can only be done within the
kernel), and so this mechanism is instead provided via Linux extended attributes. See Linux Extended
Attributes for more specific information.

10

Chapter 4. Concepts
At a high level, the HPSSFS-FUSE interface is very simple and straightforward. Almost all POSIX-
based operations one can perform on a Linux filesystem can also be executed on an HPSSFS-FUSE-
mounted filesystem. Even so, there are some exceptions. This section covers characteristics about
HPSSFS-FUSE that should be understood by those considering its use in their environment.

4.1. HPSS and the Nature of Hierarchical
Storage

While readers of this document are presumed to be familiar with HPSS, we will review here some
HPSS concepts that are particularly relevant to the HPSSFS-FUSE interface. HPSS is a hierarchical
storage management (HSM) software designed to manage and access petabytes of data at high data
rates. HPSS is most cost effective for archives larger than 10PB. While appearing to the user as a disk
filesystem, HPSS manages the life cycle of data by moving inactive data to tape and retrieving it the
next time it is referenced.

HPSS is a distributed solution with file attributes stored on the Core Server, data stored on Mover
systems, and HPSSFS-FUSE applications running on client nodes, among other client interfaces.
The cluster aspect of HPSS combines the power of multiple computer nodes into a single, integrated
storage system. The computers that comprise the HPSS platform may be of different makes and
models, yet the storage system appears to its clients as a single storage service with a unified common
name space.

When users access HPSS via the HPSSFS-FUSE interface or one of the other HPSS interfaces such as
FTP or the Client API, they are presented with a UNIX-like filesystem view of their data. In addition
to files, HPSS supports directories, symbolic and hard links, and attributes compatible with any
modern UNIX filesystem. Unlike a conventional disk-based filesystem, however, HPSS must deal
with the latency of accessing data on both disk and tape. Access to data may be delayed as tapes
must be mounted and queued with other tape drive/library activities. Data is stored sequentially on
tape media, which is different from disk-based storage that provides random access to data. While
interfaces may provide conveniences and hide certain aspects of this behavior, fundamentally, the
system is an HSM and those using it must understand the qualities and limitations of an HSM.

Linux provides filesystem caches for file attributes and data blocks to improve performance by
temporarily storing requested information in kernel buffers. This improves performance for multiple
requests of the same information or, in the case of readahead logic, sequential access to file data.
The expense is a weak coherency between multiple clients and mount points. Performance gains are
dependent upon configuring memory resources based on number of threads, concurrent file access,
file sizes, and available system memory.

Like with other HPSS client interfaces, the configuration of HPSS is critical for optimal performance.
Configuring HPSS with correct Storage Classes, Hierarchies, Classes of Service, filesets, junctions,
and providing appropriate mount points will determine performance through the HPSSFS-FUSE
interface. Generally, different Classes of Service are created in HPSS to balance performance
with different storage media characteristics and different file sizes. Applications must understand
where in the HPSS hierarchy files in different Classes of Service are located and expect different

Concepts

11

performance. For instance, files that have to be staged from tape levels of a hierarchy will encounter
more latency compared to files at a disk level. Storage efficiency within HPSS is determined by
Storage Class segment size and the typical file sizes stored. It is also determined by the heirarchy
makeup. Applications must consider this when storing files using the HPSSFS-FUSE interface.

So, how does this affect end users? One example is using the common UNIX command grep(1).
On a local Linux filesystem, such a command can be invoked recursively on a directory tree with
little to no concern. However, when used on an HPSSFS-FUSE mount, such a command is unaware
of the current state of the files' contents and will proceed to stage any file that is not stored in HPSS
disk cache. If a user’s command searches through hundreds or thousands of files that must be staged
from tape, not only will it potentially take a very long time for the command to complete for the user,
but there can be a detrimental effect on other users of the HPSS system as tape drives are kept busy
servicing this one command. That is why it is important for administrators and end users to understand
how HPSSFS-FUSE works.

Warning

Remember the following when planning to use or introduce HPSSFS-FUSE to a site
environment:

• File attributes are readily available, but file contents may not be.

• HPSSFS-FUSE has the look and feel of a filesystem, but it is really an interface to HPSS,
which is an HSM.

4.2. Architecture
HPSSFS-FUSE is glueware that sits between HPSS and FUSE. It uses FUSE to represent HPSS as a
virtual filesystem.

Figure 1 shows the Linux client software. This software is separated into userspace and kernel. The
userspace is shown containing three types of client applications: a user application, a user shell such
as ksh(1) or bash(1), and agent software such as an NFS or SAMBA server. The VFS is the Linux
Virtual Filesystem Switch, which forwards filesystem access to the appropriate filesystem drivers,
such as FUSE, NFS, and ext3. HPSSFS-FUSE retrieves filesystem requests from the FUSE kernel
module via libfuse, and forwards them to HPSS using the HPSS Client API.

The HPSS Client API is both a user interface in its own right and a building block from which other
interfaces are created. The HPSS Client API supports the separation of command and data paths. The
command path is usually a TCP/IP path, and the data path may be a separate TCP/IP data path, or it
may be implemented as a SAN such as fibre channel. HPSS documentation refers to the SAN option
as SAN3P (SAN 3rd Party), where the client application is the 3rd party performing the SAN I/O.
HPSSFS-FUSE is able to use SAN3P transfers in order to take advantage of the direct client-to-disk
data transfer mechanism.

SAN3P

There is a security vulnerability associated with the use of SAN3P. If a user is root on a
machine which has access to the SAN (e.g. a client machine), then that user has the potential to
access or destroy fiber-channel connected disk storage. Two areas of concern:

Concepts

12

1. Verification that only authorized users (usually limited to only root or hpss) are granted
read and write access to these resources.

2. HPSS administrators should be aware that machines, possibly owned or managed by other
groups, which are added to the SAN to facilitate the use of SAN3P transfers will have
access to all data on disk and tape resources. If those systems are compromised, or if there
are individuals authorized for system privileges on those particular machines, but not
necessarily authorized for HPSS administrative access, there is the potential for access and/
or damage to HPSS data. These are inherent limitations of SAN implementations that have
not yet been addressed by the industry and cannot be remedied by HPSS.

Figure 4.1. HPSSFS-FUSE Components

Based on experience in the field, we recommend that separate HPSSFS-FUSE mount points exist for
each major application that resides on top of it. When used in a gateway configuration using agent
software, there is no requirement for separate mount points, but for performance or load-balancing
it may be necessary. The separate mount points allow for easier control and troubleshooting of the
system.

Concepts

13

4.3. How It Works
Here is an example of what happens when a user tries to open a file:

1. Application issues an open(2) call on a file.

2. The Linux VFS provides common filesystem functionality, then passes control to the FUSE kernel
module.

3. libfuse retrieves the request from the FUSE kernel module, and calls a callback function in
HPSSFS-FUSE to service the request.

4. HPSSFS-FUSE uses the HPSS Client API to open the file.

5. The HPSS Core Server performs the file open. If permissions, path, and attributes are valid, the file
is opened.

6. The HPSS Client API receives a response from the HPSS Core Server indicating success or failure.
This status is returned to HPSSFS-FUSE.

7. HPSSFS-FUSE replies to the FUSE kernel module via libfuse.

8. The FUSE kernel module returns the information back to the Linux VFS.

9. The Linux VFS returns the system call.

10.Application receives status from the system call and acts accordingly.

4.4. Supported Functionality and
Limitations

Mount Options

The following references HPSSFS-FUSE mount options.

• Most HSM users access file data in sequential order. The HPSSFS-FUSE interface implements a
sequential readahead algorithm to increase the probability that the next requested read will be in the
HPSSFS-FUSE buffer cache. The following should be understood about this algorithm:

• For performance reasons, when files are read sequentially, HPSSFS-FUSE will read the next
sequential portion of a file before an application requests it. This helps reduce the read latency to
the application. The size of the portion ranges from 128KB up to stream megabytes. It starts out
at 128KB, and then it doubles for each successive read, with the maximum readahead window of
stream megabytes. If the read requests are not sequential, the readahead is not performed. If the
application read requests do not read the entire readahead buffer, the readahead buffer size will
remain the same.

• The default stream value is 8MB. This means the readahead algorithm will consume 8MB
for every open file. The system RAM should be sized for the maximum readahead buffersize
multiplied by the number of concurrent files being read.

Concepts

14

• For maximizing performance, the application should issue sequential read requests that are equal
to the maximum readahead buffer size.

• Files that are opened with O_SYNC or O_DIRECT will not use buffered I/O, and therefore will not
use the readahead algorithm.

• Using a stream option with the value 0 will cause all open files to use unbuffered I/O, and
therefore will not use the readahead algorithm.

• A writeback algorithm is in place similar to the readahead algorithm. It shares the same buffer
with the readahead algorithm.

Note

HPSSFS-FUSE will attempt to abort HPSS requests when an open, write or read is interrupted.
For example if you are writing a file in HPSSFS-FUSE and interrupt the write with CTRL-C,
then HPSSFS-FUSE will attempt to abort the write in HPSS.

Warning

When a new subsystem is added to HPSS, HPSSFS-FUSE will need to be remounted in order
to allow aborts to be sent to that subsystem and to update the XML limits that HPSSFS-FUSE
uses.

Warning

HPSSFS-FUSE does not provide file locking capability. This may lead to unexpected behavior
in some applications or in instances where multiple users are accessing the same file.

• The HPSS maximum for 10,000 storage segments applies. When storing a file using HPSSFS-
FUSE, use a Storage Class that supports a storage segments size that can accommodate the intended
size of the file. The Storage Class used is dependent on the mount option cos=ID and/or the fileset
where the file is being stored. An additional consideration is the mount option maxsegsz.

• The HPSS maximum for 2,000 fragments applies. Fragments are sections of data separated by a
hole where an application has not written data. Using the lseek(2) system call, an application can
skip around in a file to write data at various offsets. HPSS does not initialize or store data for these
holes; metadata is maintained to identify the holes. When a file reads at an offset that is a hole, the
data values are binary zero.

• The Linux df(1) command statistics represent the entire Class of Service (COS) statistics. The sum
of all Storage Classes in the COS Hierarchy is reported. The reported free space may not represent
the amount of space that can be written, especially when there are multiple levels in the Hierarchy.
A mount point may not even show up in the df(1) listing if the total storage for its COS is 0 (e.g. a
dummy default COS).

• Security: There are no restrictions from the Core Server on which nodes can connect via HPSSFS-
FUSE. Any node that can install the HPSS Client API can access HPSS.

• HPSS provides a restricted user capability for blacklisting users based on User ID from
connecting to the system. This only affects which users can be used as the principal for login
credentials, so blacklisted users may still use HPSSFS-FUSE when using the hpssfs principal.

Concepts

15

See "Restricting user access to HPSS" in the HPSS Management Guide [http://www.hpss-
collaboration.org/online_doc.shtml] for more information.

• Keytabs are commonly used to facilitate establishment of HPSS credentials. It is recommended
to use a keytab for the hpssfs principal for use by HPSSFS-FUSE. This keytab should be
protected to prevent unauthorized access by unprivileged users.

• FIFOs and other special devices: HPSS and therefore HPSSFS-FUSE does not support named pipes
(FIFOs), character device files, and block devices; use a local filesystem for these purposes.

• Kernel caching and data buffering: The Linux kernel caches directory and file attributes. This
may prevent retrieving up-to-date attributes from HPSS that are updated by other HPSS clients
(including other HPSSFS-FUSE mounts on the same machine). Different clients may receive
different information based on what is cached and when changes are made. The benefits of caching
attributes and buffering data are to minimize latency to the application by not waiting to retrieve
data from HPSS. Direct I/O can be used to bypass the data buffer cache, but every read and write
will require transferring data from HPSS. The attribute cache timeout is controlled by the attrtimeo
mount option. The name cache timeout is controlled by the entrytimeo mount option. These
caches can be disabled by setting their values to 0. This will increase coherency at the expense of
performance.

• The caching mechanisms help reduce latencies, but cause a weak coherency concerning external
applications.

• The data buffering mechanisms help increase throughput, but at the expense of reduced coherency.
For transaction-sensitive applications where data written to HPSS using the HPSSFS-FUSE
interface requires guaranteed updates, the program must do one or more of the following:

• Rely upon fsync(2) to flush data buffers to HPSS.

• Open a file with the O_SYNC or O_DIRECT flags to flush data on every write.

• Rely on the return value from the close(2) function as indication of successfully flushed data.

Otherwise, a successful return code from the write(2) system call is not a guarantee that all data
has been completely flushed to HPSS at that point in time. The application programmer must
balance the performance advantages of buffering versus the requirements for data synchronization
between their application and HPSS. This behavior is consistent with the POSIX standard, and true
of both local storage resources (e.g. disk partitions) as well as remote storage such as HPSSFS-
FUSE and NFS.

Warning

As stated above, concurrent file access across mount points may result in inconsistent results
due to caching. Caching can be disabled at the cost of reduced performance.

• The HPSSFS-FUSE Gateway is essentially a "store and forward" machine that should be taken into
consideration when sizing any Linux gateway computers.

• HPSSFS-FUSE supports a number of extensions to the POSIX library interface to enable users
to control specific HPSS attributes, such as setting the Class of Service (COS) value. The list of
extensions and how to use them is documented in the Extensions section.

http://www.hpss-collaboration.org/online_doc.shtml
http://www.hpss-collaboration.org/online_doc.shtml
http://www.hpss-collaboration.org/online_doc.shtml

16

Chapter 5. Tuning & Troubleshooting
Like most systems, HPSSFS-FUSE will require tuning to allow users/applications to perform
optimally. The underlying HPSS configuration, network topology, and client systems can affect
performance and the operation of the system. This section covers the major tuning components
of HPSSFS-FUSE, what to look for when analyzing the performance of the system, and what
troubleshooting resources and procedures are available for the administrator to use in diagnosing
problems.

5.1. Expectations
Administrators and users should expect HPSSFS-FUSE to perform similarly to the HPSS Client API.
In some cases the performance may be better because of the kernel caching (namespace attributes and
file data), but in general the transaction and transfer performance will be in-line with HPSS Client
API because HPSSFS-FUSE uses the API for its interaction with HPSS. Therefore, it is important
to ensure that performance as measured by tools, such as the API Example code, are consistent with
baseline numbers documented during the deployment of the system. The HPSS Test Plan and Results
report or other similar testing should be reviewed and compared with results measured against the
current system. If the performance of the HPSS Client API on the HPSSFS-FUSE machine is not up
to expected rates, then correcting those deficiencies should be addressed before focusing on HPSSFS-
FUSE performance.

5.2. Testing Procedures
During the initial deployment of an HPSS system, the support representative conducts a number
of functional and performance tests on the system. These tests include procedures for checking the
client interfaces to be used at a given site, including HPSSFS-FUSE, if configured at the time of
the installation. The results from these tests are used as a baseline for comparing performance of
the system when changes are made to HPSS or the client environment, or when troubleshooting a
performance problem.

The first task is to repeat those same HPSSFS-FUSE tests to compare against the baseline results. A
high-level summary of some tests that might be exercised are outlined below:

• Directory listing of namespace.

• ls(1)

• find(1)

• Simple file/directory operations.

• mkdir(1)

• rmdir(1)

• touch(1)

• unlink(1)

Tuning & Troubleshooting

17

• mv(1)

• ln(1)

• cd(1)

• Copy multiple groups of files into and out of HPSSFS-FUSE.

• Rerun the HPSSFS-FUSE performance tests to obtain new baseline results.

• Use a script to touch(1) numerous files in a directory, then perform an rm -rf * 1 at the directory
level to delete all the files created.

• Use a script to exercise HPSSFS-FUSE for an extended period (24-48 hours). This can be as
simple as copying files into the HPSSFS-FUSE mount point. Multiple copy operations should be
performed from a single script, and if possible, multiple clients should be used.

• Perform tar(1) and gzip(1) on files located in the HPSSFS-FUSE mount point.

• Perform dd(1) into and out of the HPSSFS-FUSE mount point.

• Use a basic C program which creates, opens, writes, and closes files.

• Use a basic C program which reads the previously created files. If possible, read migrated/purged
files (files on tape with no copy in the HPSS disk cache), to monitor how HPSSFS-FUSE handles
staging.

5.3. Tuning Concepts

5.3.1. What are we tuning?
How one plans to use HPSSFS-FUSE is key to what should be done to tune the system. Is the usage
primarily oriented to access the namespace and file attributes? Is the goal to optimize data I/O?
What file sizes are expected? Are there a few users or many? How is load balanced? These and other
questions need to be considered before starting the tuning process. If there are divergent requirements,
then multiple HPSSFS-FUSE mounts may be necessary to optimize a particular access pattern.

Consider making the adjustments only when necessary. Likely, it will take some experimentation to
get the right set of options. If usage conditions or requirements change, tuning options may need to be
reevaluated and adjusted.

5.3.2. Configuring for efficient HPSS storage
HPSS stores portions of a file in what are called storage segments. Since each storage segment has
to be tracked, there is metadata created for each storage segment. To prevent individual files from
monopolizing HPSS metadata space, there is a maximum number of segments that HPSS will allow

1Be extra careful with this command, especially if running as root!

Tuning & Troubleshooting

18

for each file (10,000 is the maximum). Another important aspect is if the amount of data written to a
storage segment is less than the storage segment size, the remaining space cannot be used for anything
else (it is wasted space). The size of a storage segment is determined by the Class of Service (COS)
being used and whether the mount option maxsegsz is specified.

To help with usage patterns, HPSSFS-FUSE allows you to configure mount points for a specific
COS or to use the maximum segment size. By specifying a specific COS for a mount point, you can
have some control over the segment size allocation and which Storage Class will be used when an
application creates a file. The exception to this rule is if the file is created in a fileset. In that case,
the COS set for the fileset will be used instead of the mount option COS if it is not set to NONE. The
COS has an "Allocation Method" where you can choose either Fixed, Maximum, or Variable. Using
the correct allocation method will determine how efficiently HPSS stores a file.

• Fixed usually will default to the minimum segment size for the Storage Class. This is most efficient
when the file sizes are typically less than or very near to the Storage Class minimum segment size.
It is least efficient when the file sizes are typically many multiples of the minimum segment size
and the difference between minimum segment size and maximum segment size is large.

• Maximum will default to the maximum segment size for the Storage Class. This is most efficient
when the file sizes are typically close to or greater than the maximum segment size. It is least
efficient when the file sizes are typically very small because the maximum segment size will be
allocated and only a very small part of the segment will be used.

• Variable allows for a progression of larger segments for each segment. This method is often
referred to as Variable Length Segment Size (VLSS). It was introduced to help when the file
sizes vary greatly and the difference between the minimum and maximum segment sizes for a
Storage Class is large. With each successive storage segment allocated being double the size of
the previous (up to the maximum segment size), the efficiency is greatly improved. There are
fewer segments (minimizing the metadata overhead) and less wasted space (versus the Maximum
allocation method), which allows much larger files than using the Fixed allocation method. To
minimize the unused space in the last segment of the Variable allocation method, the segment size
is reduced to the smallest multiple of the minimum segment size.

The top level Storage Class definition determines the actual minimum and maximum segment sizes
to be used. Configuring the mount point to a COS which uses a Storage Class that is appropriate
based on the sizes of the files to be created will greatly influence the HPSS efficiency. The Storage
Class will also greatly influence the allowable sizes of files that can be stored. As indicated above,
the Fixed allocation method will use the Storage Class minimum segment size. This will limit the
maximum file size to be the Storage Class minimum segment size multiplied by the maximum number
of Bitfile segments that HPSS can support. HPSSFS-FUSE does support an override of using the
Fixed allocation method minimum segment size, however the override is to use the Storage Class
maximum segment size (from one extreme to the other).

HPSSFS-FUSE does allow an application to override the mount point specification for a COS. The
caveat is an extra system call has to be made to HPSSFS-FUSE by the application to accomplish
this. A limitation of using standard Linux applications (e.g. cp(1) command) is they do not support
setting the COS explicitly. Because of this, it is critical to understand application file creation
patterns and setting up COS and Storage Class that support the applications. It may be necessary
for multiple mount points to be used to get the COS and Storage Class combinations correct for
different application usage patterns. For this reason, it is sometimes best to use multiple HPSSFS-
FUSE mounts to provide different optimization options to the same HPSS namespace.

Tuning & Troubleshooting

19

See "Storage Configuration" in the HPSS Management Guide [http://www.hpss-collaboration.org/
online_doc.shtml] for more information.

5.4. Troubleshooting
There are several sources of information available for the administrator to look at when
troubleshooting an HPSSFS-FUSE problem. The following section documents where this information
is stored and what can be done to monitor and control the level of output.

Client API

Keep in mind the following about HPSSFS-FUSE: it is built upon the HPSS Client API. If
there are basic communication problems or performance issues with the HPSS Client API,
there is little point to troubleshooting HPSSFS-FUSE itself. It is recommended that the
administrator perform a set of basic operations using scrub or the API example programs to
verify the function and performance of the system. There may very well be problems with
HPSSFS-FUSE in the end, but troubleshooting the operating system and HPSSFS-FUSE
prerequisites commonly saves a lot of time and effort.

Because HPSSFS-FUSE is built upon the HPSS Client API, it is useful to set the API debug/logging
environment variables (/var/hpss/etc/env.conf):

• HPSS_API_DEBUG=<level>

• HPSS_API_DEBUG_PATH=<stderr|/path/file>

HPSS_API_DEBUG

The HPSS_API_DEBUG value can be increased up to 7 to produce output that is more
detailed. HPSSFS-FUSE will need to be restarted for the environment variables to take effect,
meaning the mount points will have to be remounted.

See "Tuning and Troubleshooting" in the HPSS Programmer’s Reference [http://www.hpss-
collaboration.org/user_doc.shtml] for more information.

5.4.1. Syslog
The most important resource for monitoring HPSSFS-FUSE mount points is the Linux syslog. Linux
system error and diagnostic messages are logged to /var/log/messages. This file is only directly
readable by root; any non-privileged user can view it using the dmesg(1) command. When this file
grows larger than some configured size (see logrotate(8)), it is rotated to a file name that is post-
fixed with an integer value that indicates its relative age.

HPSSFS-FUSE has a number of logging message classes. These include ERROR and 5 TRACE
levels. The trace class messages must be enabled in order to appear in the syslog. The trace level is
controlled by a mount option and at runtime via the system.hpssfs.trace xattr. The ERROR class is
intended to indicate a potentially disastrous error. The TRACE class is intended to give increased
level of detail for diagnosing issues, and should be set to 0 except when directed otherwise by HPSS
support.

http://www.hpss-collaboration.org/online_doc.shtml
http://www.hpss-collaboration.org/online_doc.shtml
http://www.hpss-collaboration.org/online_doc.shtml
http://www.hpss-collaboration.org/user_doc.shtml
http://www.hpss-collaboration.org/user_doc.shtml
http://www.hpss-collaboration.org/user_doc.shtml

Tuning & Troubleshooting

20

5.4.2. Foreground Logging
If the -f mount option is used, HPSSFS-FUSE will run in the foreground. All HPSSFS-FUSE ERROR
and TRACE messages will be printed to stderr instead of the syslog in this case. This is mainly useful
for when a developer needs to assist in diagnostics.

5.4.3. HPSS Logs and Alarm & Events Display
One reason for insisting that all HPSS servers and client machines be time-synced is to help the
administrator determine what HPSS errors, as reported in the main HPSS error logging facility,
correspond to problems logged on the client machines. By matching the date and timestamps,
HPSSFS-FUSE errors such as a write -5, the ambiguous "something went wrong" I/O error, can
further be analyzed on the HPSS server side. Such analysis can help determine if the error is network-
related, maybe a sporadic outage between the HPSSFS-FUSE client and HPSS, or maybe a tape has a
permanent error and the user’s HPSSFS-FUSE request simply cannot be fulfilled.

If there doesn’t seem to be any corresponding information in the HPSS logs, it may be advantageous
to repeat the user request on another HPSSFS-FUSE client, or even use another HPSS interface such
as PFTP to help isolate what part of the overall system is not working correctly or performing poorly.

5.4.4. Core Dumps
Core dumps should be enabled in case HPSSFS-FUSE happens to crash. If this occurs, please send the
core dump to your support representative.

If using abrtd(8), it may be useful to adjust abrt.conf(5) and abrt-action-save-package-
data.conf(5) in order for it to generate a full crash report. Restart the abrtd(8) service if you
update these configuration files.

abrt.conf

• MaxCrashReportsSize — may need to increase or set to unlimited.

abrt-action-save-package-data.conf

• OpenGPGCheck = no — if you have installed an unsigned HPSSFS-FUSE package.

• ProcessUnpackaged = yes — if you have installed HPSSFS-FUSE from source.

5.4.5. Force Unmount
Due to exceptional circumstances, it may be necessary to perform a force unmount to unmount an
HPSSFS-FUSE mount point. This can be achieved with the -f flag in the umount(8) command:

$ umount -f /mnt/hpss

In rare situations, this may be insufficient. It may be necessary to issue an abort through FUSE’s
debugfs interface.

$ grep "/mnt/hpss" /proc/self/mountinfo | cut -d' ' -f3 | cut -d':' -f2

Tuning & Troubleshooting

21

47
$ echo 1 > /sys/fs/fuse/connections/47/abort
$ umount /mnt/hpss

5.5. Special Notes

5.5.1. updatedb(8)
updatedb(8) creates or updates a database used by locate(1). updatedb(8) is usually run daily by
cron(8) to update the default database. On HPSSFS-FUSE mounts, this can be a very demanding
operation due to the sheer number of files and directories in the HPSS namespace.

You may want to disable HPSSFS-FUSE mounts from being scanned by updatedb(8) by editing
updatedb.conf(5). Adding fuse.hpssfs to the PRUNEFS list will disable all HPSSFS-FUSE mounts
from being scanned. Alternatively, you can specify paths or subpaths of HPSSFS-FUSE mounts in
PRUNEPATHS to exclude sets of files and directories which may be very large.

5.5.2. Mounting over SSH
If mounting HPSSFS-FUSE on a remote machine using SSH, it is important to note that you will
need to either redirect all output from HPSSFS-FUSE to NULL, or use the "-t" parameter to SSH. If
neither of these are done, the SSH command will stay open until the HPSSFS-FUSE mount point is
unmounted.

22

Chapter 6. Unprivileged Mounts
FUSE allows unprivileged mounts. This means mounts performed by unprivileged users. It achieves
this by having a helper set-uid program fusermount(1) perform mounts for FUSE filesystems. On
some systems, the default permissions only allow users in the group fuse to execute this program. This
is recommended to isolate unprivileged mounts to trusted users only.

Although this allows unprivileged users to mount HPSSFS-FUSE, they must still provide valid
HPSS credentials for the mount to succeed. Only a principal which has the Core Server Control ACL
(such as hpssfs) can perform operations on behalf of other users, so unprivileged mounts should
be limited to principals which do not have the Core Server Control ACL. It is recommended not to
use the allow_other mount option on unprivileged mounts because without the Core Server Control
ACL, all operations will be performed on behalf of the principal used for the mount. Furthermore,
it is recommended that unprivileged mounts perform the mount as the user which is supplied as the
principal, otherwise FUSE may prevent access to your files due to the uid mismatch.

SAN3P

SAN3P transfers may not work with unprivileged mounts since they require read-write access
to the SAN devices.

Checksum

The checksum feature may not work with unprivileged mounts since it requires read-write
access to HPSS’s root directory and to the files being opened.

23

Chapter 7. Uses
The HPSSFS-FUSE interface provides users with the ability to use commonly available file transport
mechanisms. This simplifies the use of HPSS by allowing users to access HPSS via interfaces they are
familiar utilizing. This section covers some of these applications, their use, hints at how they might
be configured for use with HPSSFS-FUSE, describes any known limitations or changes required, and
recommendations or lessons learned from field experience.

7.1. General

7.1.1. Overview
If you have not read Concepts, you need to review it and have a good understanding about the
differences between a filesystem (i.e. LFS, GPFS, etc) and an HSM (HPSS). It must be stressed
that HPSSFS-FUSE looks like a filesystem, but it is an interface to HPSS, which is an HSM. Those
differences can have a significant impact to applications that expect 100% compatibility with a true
filesystem. Users who run large programs successfully on a shared filesystem like GPFS, may run
into issues with their application when files are not immediately available (e.g. must be staged from
tape) or where too many simultaneous open files, small block, or random I/O operations are occurring.
HPSSFS-FUSE is a convenience for accessing HPSS, but it will not hide the realities of the storage
system behind it.

7.1.2. Applications
The HPSS team supports the HPSSFS-FUSE interface and will assist administrators (based on the
contract or SOW that exists with a site) with its use. However, HPSS does not provide support for
applications that reside on top of HPSSFS-FUSE. Several applications are mentioned in this section
including the popular SAMBA interface that provides file sharing across a number of different
operating systems. Many sites have been able to successfully use SAMBA and other tools with
HPSSFS-FUSE. Even so, the HPSS team itself does not provide support for installing, configuring,
or maintaining 3rd party applications. Before sites use these applications, they must be prepared
to support themselves or obtain support from other sources. If there are problems using one of
the applications, and it can be shown that the underlying problem is because HPSSFS-FUSE is
mishandling an operation, HPSS support will submit a bug report to development and look for
ways to address the issue. It is imperative that the administrator provide as much detail as possible
when reporting a problem and have performed due-diligence in ensuring the problem is not with the
application or how the end user is using the application.

7.1.3. End-User Access to HPSSFS-FUSE
If there are to be end users directly accessing HPSSFS-FUSE who are not necessarily aware of HPSS
and its HSM characteristics, it is suggested that certain UNIX commands that recursively perform
name-space operations on files be aliased with scripts or programs to test what filesystems they are
accessing. In the case of grep(1) or fgrep(1), a warning or limitation should be in place to ensure
that users don’t accidentally search for a string in files and induce a large number of file stages from
tape as the command recursively navigates the directory tree. It is likely impossible to prevent all such
possible accidents by users, and certainly in no way will prevent intentional misuse of the system,

Uses

24

but such precautions will quickly pay for the extra up-front effort by redirecting common filesystem
commands that aren’t necessarily "HSM friendly".

cp(1) and mv(1) Commands

The cp(1) and mv(1) commands from coreutils, by default, attempt to optimize I/O by skipping parts
of a file that are heuristically determined to be sparse, i.e. contain large sequences of zeros. If a sparse
section of a file is encountered while reading, the corresponding part of the destination file is skipped
(using lseek(2)), and writing is resumed where the chunk of zeros ends. This has the potential to
significantly reduce the amount of writing performed.

In the case that the destination file is in HPSSFS-FUSE, sparse files tend to produce issues. When
writing to a file, skipping over a section (using lseek(2)) and then writing causes a new Bitfile
segment to be created (it would otherwise extend the current Bitfile segment). If this is done
frequently, you may eventually run into an HPSS limit on the number of Bitfile segments. If this
happens, then no additional Bitfile segments may be created. Therefore, it is recommended that when
using the cp(1) command, you use the --sparse=never option, which switches off the optimization
described earlier. This causes cp(1) to actually write the sparse sections to the destination file,
effectively writing the entire file in a single Bitfile segment. However, the mv(1) command has no
equivalent option, so it is recommended to cp --sparse=never into HPSSFS-FUSE and unlink the
source file instead of trying to use mv(1).

7.2. SAMBA
SAMBA is a suite of UNIX applications that speak the SMB/CIFS protocol. Microsoft Windows®
operating systems and the OS/2® operating system use SMB to perform client-server networking
for file and printer sharing and associated operations. By supporting this protocol, SAMBA
enables computers running UNIX to get in on the action, communicating with the same networking
protocol as Microsoft Windows and appearing as another Windows system on the network from the
perspective of a Windows client. A SAMBA server offers the following services:

• Share one or more directory trees

• Share one of more Distributed File System (DFS) trees

• Share printers installed on the server among Windows clients on the network

• Assist clients with network browsing

• Authenticate clients logging onto a Windows domain

• Provide or assist with Windows Internet Name Service (WINS) name-server resolution

The SAMBA suite also includes client tools that allow users on a UNIX system to access folders and
printers that Windows systems and SAMBA servers offer on the network.

7.2.1. Configuration and Code Modification
Suggestions

One site added a patch which disables the feature where Windows can set a "sticky" file modification
time. This causes the file modification time to be updated after every received block (4KB-64KB

Uses

25

depending), which is a round trip to the metadata server. If the HPSSFS-FUSE Gateway machine
is not local, but attached to HPSS via a WAN, this type of change is important to maintain high
transaction performance.

This is a change that sites would like to see in the SAMBA baseline, but as it stands today, such
a change which would benefit other non-local filesystems (e.g. NFS) has not been adopted by the
keepers of the SAMBA code. Local modifications to the SAMBA code are required.

Sites may want to make a modification to SAMBA to check for and delete a file before creating it
using an open for write with truncate. This allows a site to perform a Class of Service (COS) change
on an existing file. Otherwise, specifying a different COS (either by an explicit ioctl call or using an
alternate HPSSFS-FUSE mount) is ignored.

7.3. NFS

7.3.1. Overview

Network File System (NFS) is an RPC protocol used to share files and directories across a network.
NFSv3 is not supported by HPFSSFS-FUSE.

7.3.2. Configuration Suggestions

At present, few HPSS sites are currently using NFS over HPSSFS-FUSE in production. Based on past
experimentation, however, we recommend the following:

• The nfs4 mount option should be included for HPSSFS-FUSE mounts exported for use by
NFSv4 clients. Using the NFS mount option with non-NFS clients is not supported and can cause
unexpected behavior.

• Since NFS is incompatible with junctions, the nfs4 mount option disables junctions. It is possible
to mount fileset roots directly, avoiding the need for junctions. Secondary mount points may
be overlaid on an existing mount to provide a contiguous namespace that resembles the HPSS
namespace.

• A large number of nfsd(8) processes has not been shown to improve NFS performance with
HPSSFS-FUSE. It is recommended that the administrator starts with no more than 4 or 8 nfsd(8)
processes and adjust upwards only after conferring with HPSS support.

7.4. Secure FTP
SFTP is the SSH® File Transfer Protocol (sometime referred to as the Secure File Transfer Protocol).
Some sites use SFTP clients to access the HPSS namespace via the HPSSFS-FUSE interface of HPSS.
This allows for a secure, encrypted access from client machines that are not supported via the Client
API, or just as a more general interface for users that do not want to run the HPSS Client API.

Uses

26

7.4.1. Configuration and Code Modification
Suggestions

Sites may want to consider making a small patch to the SFTP code to delete a file before creating it
using an open for write with truncate. This allows a different Class of Service (COS) to be used if the
same file is rewritten. This was done in the sftp-server(8) and scp(1) Linux code at one of the
HPSS sites.

7.5. Apache

7.5.1. Overview
The Apache HTTP Server Project is an effort to develop and maintain an open-source HTTP server
for modern operating systems including UNIX and Windows operating systems. The goal of this
project is to provide a secure, efficient, and extensible server that provides HTTP services in sync with
the current HTTP standards. Some sites use the HTTP server to run a CGI program to give their users
an interface to upload and download files from their HPSSFS-FUSE system.

7.5.2. Configuration Suggestions
Some sites use a CGI program to provide their users with the ability to upload and download files
though a web interface. There were no code or configuration changes made to HPSSFS-FUSE in order
to get this to work. It was suggested that the following line in httpd.conf be uncommented:

• #EnableSendfile off

7.5.3. Recommendations
Apache on top of HPSSFS-FUSE works well for deep archive-type access where infrequently used
data can be back-stored in HPSS. For frequently accessed data, or frequently updated information as
found on most web-services (e.g. news or sales-oriented site), HPSSFS-FUSE is probably not a good
fit unless there is substantial HPSS disk cache and files rarely need to be staged back from tape.

27

Chapter 8. Mount Options
HPSSFS-FUSE has a multitude of options to configure mount points.

8.1. Credentials
These are mount options related to setting up HPSS credentials.

Option Description Example Default

auth Primary authenticator. auth=auth_keytab:/

var/hpss/etc/

hpss.unix.keytab

$HPSS_PRIMARY_AUTHENTICATOR

authmech Authentication mechanism. authmech=unix $HPSS_PRIMARY_AUTHN_MECH

authtype Authentication type. authtype=auth_keytab Derived from auth value

princ Principal name. princ=hpssfs $HPSS_PRINCIPAL_FS

8.2. HPSS Options
These are the mount options related to HPSS.

Option Description Example Default

cos COS ID on newly created
file.

cos=1 0 (HPSS default COS)

family Family ID on newly created
files.

family=1 0 (None)

maxfsz Maximum offset to allow
writing in MB.

maxfsz=1024 0 (unlimited)

var HPSS var path var=/var/hpss_test $HPSS_PATH_VAR

[no]maxsegz Use the maximum COS
storage segment size when
creating a new file.

maxsegsz nomaxsegsz

[no]acl Enable POSIX Access
Control Lists extended
attributes.

acl noacl

[no]san a Enable SAN3P. san Derived from
$HPSS_API_SAN3P

[no]shm Enable shared memory
transfers.

shm noshm

[no]stage Enable staging files on
open.

nostage stage

Mount Options

28

Option Description Example Default

[no]stagetape Allow mount point to open
files that are only available
on tape. b

nostagetape stagetape

eremote_calloutCallout/hook for when an
EREMOTE occurs with
nostagetape. Defines a valid
executable.

eremote_callout=/home/

userA/hpssfs/post-

process.py

None

aSAN3P transfers are only available for privileged mounts.
bstagetape mount option only valid on HPSS 8.1 or newer.

8.3. Checksum Options
These are the mount options related to checksum.

Option Description Example Default

cksum Algorithm to use for
checksum processing.

Valid options (case-
insensitive):

• none

• adler32

• crc32

• md5

• sha1

• sha224

• sha256

• sha384

• sha512

cksum=md5 none (no checksum
processing)

nch What to do when a non-
checksummed file is
opened.

• f — Fail to open

• g — Generate a new
checksum

nch=g f

Mount Options

29

Option Description Example Default

• i — Do not perform
checksum processing

rvl Seconds for how long a
file is valid since it was
successfully verified.

rvl=3600 0

ckstyle a Where to store checksum
attributes.

• filehash — Store in
File Hash metadata

• uda — Store in UDA
metadata

• hybrid — Store in both
File Hash and UDA
metadata

ckstyle=filehash hybrid

[no]cksumatimeAllow checksum readbacks
to update atime.

nocksumatime cksumatime

aRequires HPSS File Hash (E2EDI) feature.

8.4. Other HPSSFS-FUSE Options

Option Description Example Default

attrtimeo Seconds to keep cached file
attributes.

attrtimeo=60 60

entrytimeo Seconds to keep cached
entry names.

entrytimeo=30 30

stagetimeo Seconds to wait for stage
completion.

stagetimeo=3600 3600

udatimeo Seconds to wait for UDA
lock (minimum allowed
value 25).

udatimeo=25 25

trace Level of detail for logging. trace=1 0

ip Specifiy the interface over
which HPSSFS-FUSE
will communicate with the
Mover(s). Value provided
can be a hostname, IP
address, or network
interface. This option
may be supplied up to
32 times for striped I/O.

ip=eth0 HPSS_API_HOSTNAME

(if not set, local

hostname)

Mount Options

30

Option Description Example Default

Value(s) specified must be
resolvable on the local host.

ctrlpath Specify the interface over
which HPSSFS-FUSE will
communicate with the Core
Server for stage operations.
Value provided can be
a hostname, IP address,
or network interface.
Value specified must be
resolvable on the local host.

ctrlpath=eth0 local hostname

stream Buffer size for readahead/
writeback in megabytes.

stream=8 8

nostream Use unbuffered I/O
(equivalent to stream=0).

nostream Not used

maxfsz Maximum offset to allow
writing in megabytes.

maxfsz=1024 0 (unlimited)

autopurgelockMaximum file size in bytes
to auto-purge-lock. See
Auto Purge Lock for more
information.

autopurgelock=1048576 0 (disabled)

idmap Enable ID mapping.

Valid options (case-
insensitive):

• none

• user

• file

See ID Mapping for more
information.

idmap=user none (disabled)

uidfile UID mapping file; only
used with idmap=file

See ID Mapping for more
information.

uidfile=/var/hpss/etc/

uid.map

Not used

gidfile GID mapping file; only
used with idmap=file

See ID Mapping for more
information.

gidfile=/var/hpss/etc/

gid.map

Not used

[no]dio Whether to allow files to be
opened with O_DIRECT.

dio nodio

Mount Options

31

Option Description Example Default

[no]nfs4 Whether to turn on
optimizations for NFSv4.
See NFS for more
information.

nfs4 nonfs4

ip Option

Avoid using loopback addresses for the ip mount option. HPSSFS-FUSE will use this address
for stage callbacks and for Mover connections. If a Core Server or Mover cannot connect to
the address provided, stage callbacks and Mover I/O will fail.

8.5. FUSE Options
These are options that are passed through to the FUSE filesystem. See mount.fuse(8) for more
information.

Option Description

-d a Enable FUSE debugging. Implies -f.

-f a Run in foreground.

-s a Make FUSE requests single-threaded.

allow_other b Allow other users to access the mount point. This option is recommended for
privileged mounts which use the hpssfs principal.

allow_root b Allow root user to access the mount point.

auto_unmount
c

Automatically unmount if FUSE server process dies.

debug Enable FUSE debugging. Same as -d.

nonempty Allow mount even if mount point is not empty.

readdirplus d Enable readdirplus.

max_background
e

Maximum number of background threads to handle readahead and async I/O
threads. The default value is 100.

congestion_threshold
f

Number of threads required to be busy before the filesystem becomes congested.
The default value is 75% of the max_background value.

aThese options are only useful for diagnostic purposes.
bAvailability of this option is controlled by /etc/fuse.conf.
cRequires fusermount >= 2.9.
dRequires libfuse >= 3.0 and Linux kernel >= 3.9.
eRequires fusermount >= 2.9.
fRequires fusermount >= 2.9.

8.6. Kernel Options
These are options available to any mount point. See mount(8) for more information.

Mount Options

32

Option Description

ro Mount as read-only.

rw Mount as read-write.

[no]atime Whether to update inode access times.

[no]dev a Whether to allow access to special devices. HPSS does not support special devices,
so this option has no effect.

[no]exec a Whether to allow programs to be executed.

[no]suid Whether to honor the set-uid bit on programs.

[a]sync Whether to perform synchronous I/O.

dirsync Complete all directory updates synchronously.

context

defcontext

fscontext

rootcontext

Default SELinux labels b.

aCan only be overridden by a privileged user.
bRequires libfuse >= 2.9.7.

atime Option

Because of the way HPSS funcitons, the atime option only applies to cached data. If the data
being read is retrieved from HPSS, the Core Server automatically updates TimeLastRead and
thus noatime would have no effect.

dev and suid Options

The dev and suid options are controlled by the FUSE library. They are mounted nodev and
nosuid by default and can only be overridden by a privileged user.

33

Chapter 9. Extensions
HPSSFS-FUSE supports a number of extensions to the POSIX library interface to enable users to
control specific HPSS attributes, such as setting the Class of Service (COS) value. It also supports
additional operations that occur on the opening and closing of files.

9.1. ioctl(2) Interface
Command Description Example

HPSSFS_GET_COS Get COS getcos.c getcos.py

HPSSFS_SET_COS_HINT Set COS hints by COS ID setcoshint.c setcoshint.py

HPSSFS_SET_FSIZE_HINT Set COS hints by file size setfsizehint.c setfsizehint.py

HPSSFS_SET_MAXSEGSZ_HINT Set
HINTS_FORCE_MAX_SSEG
COS hints flag

setmaxsegszhint.c
setmaxsegszhint.py

HPSSFS_PURGE_CACHE Purge file data from the kernel
cache

purge_cache.c purge_cache.py

HPSSFS_PURGE_LOCK Purge lock or unlock a file purge_lock.c purge_lock.py

HPSSFS_UNDELETE a Undelete a file or directory b undelete.c undelete.py
aRequires HPSS Trashcan feature.
bDirectory ioctl’s require libfuse >= 2.9 and Linux kernel >= 3.3.

Extensions

34

9.1.1. Examples

getcos.c
/* getcos.c */
#include <fcntl.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argv[]) {
 int fd, rc;
 const char *filename;
 uint32_t cos;

 if(argc != 2) {
 fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
 return EXIT_FAILURE;
 }

 filename = argv[1];

 /* use O_NONBLOCK to prevent staging */
 fd = open(filename, O_RDONLY|O_NONBLOCK);
 if(fd < 0) {
 perror("open");
 return EXIT_FAILURE;
 }

 /* get the COS ID */
 rc = ioctl(fd, HPSSFS_GET_COS, &cos);
 if(rc != 0) {
 perror("ioctl");
 close(fd);
 return EXIT_FAILURE;
 }

 close(fd);

 printf("COS is %" PRIu32 "\n", cos);
 return EXIT_SUCCESS;
}

Extensions

35

getcos.py
#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

if __name__ == '__main__':
 if len(argv) != 2:
 print('Usage: %s <filename>' % (argv[0]))
 exit(1)

 with os.fdopen(os.open(argv[1], os.O_RDONLY | os.O_NONBLOCK)) as f:
 print('COS is %d' % ioctl(f.fileno(), HPSSFS_GET_COS))

Extensions

36

setcoshint.c
/* setcoshint.c */
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argv[]) {
 int rc, fd;
 const char *filename, *cosstr;
 unsigned long val;
 uint32_t cos;

 if(argc != 3) {
 fprintf(stderr, "Usage: %s <filename> <cos-id>\n", argv[0]);
 return EXIT_FAILURE;
 }

 filename = argv[1];
 cosstr = argv[2];

 /* convert COS string to value */
 errno = 0;
 val = strtoul(cosstr, NULL, 0);
 if(val > UINT32_MAX || errno != 0) {
 fprintf(stderr, "Invalid COS ID '%s'\n", cosstr);
 return EXIT_FAILURE;
 }
 cos = val;

 /* use O_NONBLOCK to prevent staging
 * create file if it doesn't exist
 */
 fd = open(filename, O_RDWR|O_CREAT|O_NONBLOCK, 0644);
 if(fd < 0) {
 perror("open");
 return EXIT_FAILURE;
 }

 /* set the COS ID hint
 * this will only work if the file has no data
 */
 rc = ioctl(fd, HPSSFS_SET_COS_HINT, &cos);
 if(rc != 0) {
 perror("ioctl");
 close(fd);
 return EXIT_FAILURE;
 }

 close(fd);

 return EXIT_SUCCESS;
}

Extensions

37

setcoshint.py
#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

if __name__ == '__main__':
 if len(argv) != 3:
 print('Usage: %s <filename> <cos-id>' % (argv[0]))
 exit(1)

 with os.fdopen(os.open(argv[1], os.O_RDWR | os.O_CREAT | os.O_NONBLOCK, 0o644)) as f:
 ioctl(f.fileno(), HPSSFS_SET_COS_HINT, int(argv[2]))

Extensions

38

setfsizehint.c
/* setfsizehint.c */
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argv[]) {
 int rc, fd;
 const char *filename, *size;
 unsigned long long val;
 uint64_t filesize;

 if(argc != 3) {
 fprintf(stderr, "Usage: %s <filename> <size>\n", argv[0]);
 return EXIT_FAILURE;
 }

 filename = argv[1];
 size = argv[2];

 /* convert size string to value */
 errno = 0;
 val = strtoull(size, NULL, 0);
 if(val > UINT64_MAX || errno != 0) {
 fprintf(stderr, "Invalide size '%s'\n", size);
 return EXIT_FAILURE;
 }
 filesize = val;

 /* use O_NONBLOCK to prevent staging
 * create file if it doesn't exist
 */
 fd = open(filename, O_RDWR|O_CREAT|O_NONBLOCK, 0644);
 if(fd < 0) {
 perror("open");
 return EXIT_FAILURE;
 }

 /* set the file size hint
 * this will only work if the file has no data
 */
 rc = ioctl(fd, HPSSFS_SET_FSIZE_HINT, &filesize);
 if(rc != 0) {
 perror("ioctl");
 close(fd);
 return EXIT_FAILURE;
 }

 close(fd);

 return EXIT_SUCCESS;
}

Extensions

39

setfsizehint.py
#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

if __name__ == '__main__':
 if len(argv) != 3:
 print('Usage: %s <filename> <size>' % (argv[0]))
 exit(1)

 with os.fdopen(os.open(argv[1], os.O_RDWR | os.O_CREAT | os.O_NONBLOCK, 0o644)) as f:
 ioctl(f.fileno(), HPSSFS_SET_FSIZE_HINT, int(argv[2]))

Extensions

40

setmaxsegszhint.c
/* setmaxsegszhint.c */
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argv[]) {
 int rc, fd;
 const char *filename, *cosstr;
 unsigned long val;
 uint32_t cos;

 if(argc != 2 && argc != 3) {
 fprintf(stderr, "Usage: %s <filename> [<cos-id>]\n", argv[0]);
 return EXIT_FAILURE;
 }

 filename = argv[1];
 cosstr = argv[2];

 if(cosstr != NULL) {
 /* convert COS string to value */
 errno = 0;
 val = strtoul(cosstr, NULL, 0);
 if(val > UINT32_MAX || errno != 0) {
 fprintf(stderr, "Invalid COS ID '%s'\n", cosstr);
 return EXIT_FAILURE;
 }

 /* set this COS ID along with maxsegsz hint */
 cos = val;
 }
 else
 /* 0 means only apply the maxsegsz hint */
 cos = 0;

 /* use O_NONBLOCK to prevent staging
 * create file if it doesn't exist
 */
 fd = open(filename, O_RDWR|O_CREAT|O_NONBLOCK, 0644);
 if(fd < 0) {
 perror("open");
 return EXIT_FAILURE;
 }

 /* set the maxsegsz hint
 * this will only work if the file has no data
 */
 rc = ioctl(fd, HPSSFS_SET_MAXSEGSZ_HINT, &cos);
 if(rc != 0) {
 perror("ioctl");
 close(fd);
 return EXIT_FAILURE;
 }

Extensions

41

 close(fd);

 return EXIT_SUCCESS;
}

Extensions

42

setmaxsegszhint.py
#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

if __name__ == '__main__':
 if len(argv) != 2 and len(argv) != 3:
 print('Usage: %s <filename> [<cos-id>]' % (argv[0]))
 exit(1)

 if len(argv) == 2:
 argv.append('0')

 with os.fdopen(os.open(argv[1], os.O_RDWR | os.O_CREAT | os.O_NONBLOCK, 0o644)) as f:
 ioctl(f.fileno(), HPSSFS_SET_MAXSEGSZ_HINT, int(argv[2]))

Extensions

43

purge_cache.c
/* purge_cache.c */
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argv[]) {
 int fd, rc, failed = 0;
 const char *filename;

 if(argc < 2) {
 fprintf(stderr, "Usage: %s <filename> [<filename> ...]\n", argv[0]);
 return EXIT_FAILURE;
 }

 while((filename = *++argv) != NULL) {
 /* use O_NONBLOCK to prevent staging */
 fd = open(filename, O_RDONLY|O_NONBLOCK);
 if(fd < 0) {
 fprintf(stderr, "open(%s): %s\n", filename, strerror(errno));
 failed = 1;
 }

 /* purge data from kernel cache */
 rc = ioctl(fd, HPSSFS_PURGE_CACHE);
 if(rc != 0) {
 fprintf(stderr, "ioctl(%s, HPSSFS_PURGE_CACHE): %s\n", filename, strerror(errno));
 close(fd);
 failed = 1;
 }
 else
 fprintf(stdout, "purged %s\n", filename);

 close(fd);
 }

 if(failed)
 return EXIT_FAILURE;

 return EXIT_SUCCESS;
}

Extensions

44

purge_cache.py
#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

Python 3 doesn't have 'xrange'; its 'range' is equivalent
try:
 xrange
except NameError:
 xrange = range

if __name__ == '__main__':
 if len(argv) < 2:
 print('Usage: %s <filename> [<filename> ...]' % (argv[0]))
 exit(1)

 ret = 0
 for i in xrange(len(argv)-1):
 try:
 with os.fdopen(os.open(argv[i+1], os.O_RDONLY | os.O_NONBLOCK)) as f:
 ioctl(f.fileno(), HPSSFS_PURGE_CACHE)
 print('purged %s' % argv[i+1])
 except Exception as e:
 print(e)
 ret = 1
 exit(ret)

Extensions

45

purge_lock.c
/* purge_lock.c */
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argv[]) {
 int rc, fd;
 const char *filename, *cmd;
 uint32_t lock;

 if(argc != 3) {
 fprintf(stderr, "Usage: %s <filename> <lock|unlock>\n", argv[0]);
 return EXIT_FAILURE;
 }

 filename = argv[1];
 cmd = argv[2];

 if(strcasecmp(cmd, "lock") == 0)
 lock = 1;
 else if(strcasecmp(cmd, "unlock") == 0)
 lock = 0;
 else {
 fprintf(stderr, "Usage: %s <filename> <lock|unlock>\n", argv[0]);
 return EXIT_FAILURE;
 }

 /* use O_NONBLOCK to prevent staging */
 fd = open(filename, O_RDONLY|O_NONBLOCK);
 if(fd < 0) {
 perror("open");
 return EXIT_FAILURE;
 }

 /* set purge lock/unlock */
 rc = ioctl(fd, HPSSFS_PURGE_LOCK, &lock);
 if(rc != 0) {
 perror("ioctl");
 close(fd);
 return EXIT_FAILURE;
 }

 close(fd);

 return EXIT_SUCCESS;
}

Extensions

46

purge_lock.py
#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

if __name__ == '__main__':
 if len(argv) != 3:
 print('Usage: %s <filename> <lock|unlock>' % (argv[0]))
 exit(1)

 if argv[2].lower() == 'lock':
 lock = 1
 elif argv[2].lower() == 'unlock':
 lock = 0
 else:
 print('Usage: %s <filename> <lock|unlock>' % (argv[0]))
 exit(1)

 with os.fdopen(os.open(argv[1], os.O_RDONLY | os.O_NONBLOCK)) as f:
 ioctl(f.fileno(), HPSSFS_PURGE_LOCK, lock)

Extensions

47

undelete.c
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

/* options */
static const struct option long_options[] =
{
 { "help", no_argument, NULL, 'h', },
 { "overwrite", no_argument, NULL, 'o', },
 { "restore-time", no_argument, NULL, 'r', },
 { "verbose", no_argument, NULL, 'v', },
 { NULL, 0, NULL, 0, },
};

/* print usage */
static void usage(const char *prog)
{
 fprintf(stderr, "Usage: %s [OPTION]... FILE...\n"
 "\n"
 "\t-h, --help \tShow this message\n"
 "\t-o, --overwrite \tOverwrite an existing file\n"
 "\t-r, --restore-time \tRestore timestamps\n"
 "\t-v, --verbose \tPrint files which have been undeleted\n"
 "\n"
 "See HPSS documentation for more information about undelete.\n",
 prog);
}

int main(int argc, char *argv[])
{
 int fd, rc, c, verbose = 0;
 int ret_code = EXIT_SUCCESS;
 const char *filename;
 uint32_t options = HPSSFS_UNDELETE_NONE;

 /* parse the options */
 while((c = getopt_long(argc, argv, "horv", long_options, NULL)) != -1)
 {
 switch(c)
 {
 /* -h or --help */
 case 'h':
 usage(argv[0]);
 return EXIT_SUCCESS;

 /* -o or --overwrite */
 case 'o':
 if(options == HPSSFS_UNDELETE_NONE)
 options = HPSSFS_UNDELETE_OVERWRITE;

Extensions

48

 else if(options == HPSSFS_UNDELETE_RESTORE_TIME)
 options = HPSSFS_UNDELETE_OVERWRITE_AND_RESTORE;
 break;

 /* -r or --restore-time */
 case 'r':
 if(options == HPSSFS_UNDELETE_NONE)
 options = HPSSFS_UNDELETE_RESTORE_TIME;
 else if(options == HPSSFS_UNDELETE_OVERWRITE)
 options = HPSSFS_UNDELETE_OVERWRITE_AND_RESTORE;
 break;

 /* -v or --verbose */
 case 'v':
 verbose = 1;
 break;

 /* invalid option */
 default:
 usage(argv[0]);
 return EXIT_FAILURE;
 }
 }

 /* check that there is at least one non-option */
 if(argv[optind] == NULL)
 {
 usage(argv[0]);
 return EXIT_FAILURE;
 }

 /* undelete each non-option */
 while((filename = argv[optind++]) != NULL)
 {
 /* use O_NONBLOCK to prevent staging */
 fd = open(filename, O_RDONLY|O_NONBLOCK);
 if(fd < 0)
 {
 fprintf(stderr, "%s: open: %s\n", filename, strerror(errno));
 ret_code = EXIT_FAILURE;
 continue;
 }

 /* undelete the file */
 rc = ioctl(fd, HPSSFS_UNDELETE, &options);
 if(rc != 0)
 {
 fprintf(stderr, "%s: ioctl: %s\n", filename, strerror(errno));
 close(fd);
 ret_code = EXIT_FAILURE;
 continue;
 }

 /* print undeleted file if verbose */
 if(verbose)
 printf("Undeleted %s\n", filename);

 close(fd);
 }

Extensions

49

 /* all files were undeleted successfully */
 return ret_code;
}

Extensions

50

undelete.py
#!/usr/bin/env python

import os
from argparse import ArgumentParser
from sys import argv, exit
from hpssfs import *

Python 3 doesn't have 'xrange'; its 'range' is equivalent
try:
 xrange
except NameError:
 xrange = range

if __name__ == '__main__':
 parser = ArgumentParser()
 parser.add_argument('-o', '--overwrite', action='store_true', help='Overwrite an existing file')
 parser.add_argument('-r', '--restore-time', action='store_true', help='Restore timestamps')
 parser.add_argument('-v', '--verbose', action='store_true', help='Print files which have been undeleted')
 parser.add_argument('filename', nargs='+', help='File to undelete')

 args = vars(parser.parse_args())

 if args['overwrite'] and args['restore_time']:
 val = HPSSFS_UNDELETE_OVERWRITE_AND_RESTORE
 elif args['overwrite']:
 val = HPSSFS_UNDELETE_OVERWRITE
 elif args['restore_time']:
 val = HPSSFS_UNDELETE_RESTORE_TIME
 else:
 val = HPSSFS_UNDELETE_NONE

 ret = 0
 argv = args['filename']
 for i in xrange(len(argv)):
 try:
 with os.fdopen(os.open(argv[i], os.O_RDONLY | os.O_NONBLOCK)) as f:
 ioctl(f.fileno(), HPSSFS_UNDELETE, val)
 if args['verbose']:
 print('Undeleted %s' % argv[i])
 except Exception as e:
 print(e)
 ret = 1

 exit(ret)

Extensions

51

9.2. fallocate(2)
HPSSFS-FUSE supports the fallocate(2) system call 1.

The fallocate(2) system call allows the user to perform two operations.

9.2.1. Preallocate

This operation allows the user to preallocate disk space on a disk Storage Class at the top of the file’s
COS Hierarchy. If this operation succeeds, a write to the file up to the preallocated size cannot fail due
to insufficient space.

9.2.2. Punch Hole

This operation allows the user to punch a hole in a file. Essentially in HPSS, this means removing the
specified portion of Bitfile segments, which consequently makes that portion of the file filled with
zeros. As a side effect, some storage segments may also be freed.

9.3. Linux Extended Attributes
HPSSFS-FUSE supports Linux Extended Attributes (xattrs). These are manipulated using the
getxattr(2), setxattr(2), listxattr(2), and removexattr(2) system calls; the attr_get(3),
attr_set(3), attr_multi(3), and attr_remove(3) library calls; and the getfattr(1),
setfattr(1), and attr(1) commands. See attr(5) for more information.

9.3.1. Features and Limitations

Improvements Over HPSSFS-VFS

• HPSSFS-FUSE supports xattrs with binary values. Previously, xattr values were limited to text-
only.

• HPSSFS-FUSE supports xattrs with values up to 64KB (enforced by the kernel). Previously, xattr
values were limited to under 1KB.

Limitations

WARNING

Linux extended attributes will not be retrievable without the following environment variables
(/var/hpss/etc/env.conf) set on the Core Server:

• HPSS_API_XMLSIZE_LIMIT=131072 (or greater)

1Requires libfuse >= 2.9.1 and Linux kernel >= 3.5.

Extensions

52

• HPSS_API_XMLREQUEST_LIMIT=131072 (or greater)

WARNING

SELinux labels are not supported at this time due to limitations with the FUSE kernel module.

9.3.2. system Namespace
HPSSFS-FUSE supports arbitrary xattrs in the system namespace. However, the
system.posix_acl_access and system.posix_acl_default xattrs are only available when using the acl
mount option. Additionally, the system.hpssfs namespace is reserved for HPSSFS-FUSE runtime
information, and the system.hpss namespace is reserved for HPSS attributes.

Name Description Access

system.hpssfs.trace View or set the current trace level for the
mount point.

Read/Write
Mount directory only

system.hpssfs.info View mount point information. More
information

Read
Mount directory only

system.hpssfs.opens View list of open files on mount point.
More information

Read
Mount directory only

system.hpssfs.apilog.level HPSS Client API log level Read/Write
Mount directory only

system.hpssfs.apilog.path HPSS Client API log path Read/Write
Mount directory only

system.hpss.account HPSS Account ID Read/Write
Files only

system.hpss.bitfile HPSS Bitfile ID Read
Files only

system.hpss.comment HPSS Comment Read/Write

system.hpss.cos HPSS COS ID a Read/Write
Files only

system.hpss.family HPSS File Family ID Read/Write
Files only

system.hpss.fileset HPSS Fileset Read

system.hpss.level HPSS Level Data. More information Read

system.hpss.opens HPSS Opens Read
Files only

system.hpss.optimum HPSS Optimum Access Size Read
Files only

system.hpss.path HPSS Path b Read

system.hpss.purgelock HPSS Purge Lock Status Read/Write
Files only

system.hpss.reads HPSS Reads Read

Extensions

53

Name Description Access

Files only

system.hpss.realm HPSS Realm ID Read

system.hpss.subsys HPSS Subsys ID Read

system.hpss.writes HPSS Writes Read
Files only

system.hpss.hash a HPSS File Hash Metadata Read/Write
Files only

system.hpss.trash.parent a HPSS Trash Parent ID Read

system.hpss.trash.uid a HPSS Trash User ID Read

system.hpss.trash.timedeleted
a

HPSS Trash Time Deleted Read

system.hpss.trash.timecreated
a

HPSS Trash Time Created Read

system.hpss.trash.timelastread
a

HPSS Trash Time Last Read Read

system.hpss.trash.timemodified
a

HPSS Trash Time Last Modified Read

system.hpss.trash.path a HPSS Trash Path Read

system.hpss.trash.name a HPSS Trash Name Read
aSetting the COS to 0 will cancel a Change COS operation.
bFull path requires HPSS 7.5 or newer; otherwise outputs fileset-relative path.

system.hpssfs.info

Recommend to view as:
getfattr -n system.hpssfs.info --only-values <mount point>

Reset counters with:
setfattr -x system.hpssfs.info <mount point>

Example output:

 Num Errors Bytes
Read ------ ------ ----------
 net 204800 0 838860800
 san3p 845 0 838860800
 shm 845 0 838860800
 total 206490 0 2516582400
 cksum 180 0 1509949440
Write ------ ------ ----------
 net 8192 0 33554432
 san3p 32 0 33554432
 shm 32 0 33554432
 total 8256 0 100663296
API Hostname: fc00::220:160
Data Hostnames:
 fc00::220:160

Extensions

54

 ::ffff:192.168.220.160

This output includes stats for reading and writing. The stats do not count the overhead of the mover
protocol.

The net row only shows up if san3p and/or shm is enabled. It is the amount of data transferred via
PDATA.

The san3p row only shows up if san3p is enabled. It is the amount of data transferred via SAN3P.

The shm row only shows up if shm (shared memory) is enabled. It is the amount of data transferred
via SHM.

The total row is the sum of the net, san3p, and shm rows.

The cksum row only shows up if Checksum is enabled. It is the amount of data that has been
checksummed (including gaps). This amount is not tallied into the total because the data transfers are
already accumulated into the net, san3p, and shm rows.

API Hostname is the address used for communicating with the Core Server, including stage callback.
It defaults to the current hostname (e.g. gethostname()), or can be changed via the ctrlpath mount
option.

Data Hostnames is the list of addresses used for communicating with Movers. There will be one
address per row which corresponds to the set of ip mount options provided. If no ip mount option was
used, the HPSS_API_HOSTNAME is used to communicate with Movers.

system.hpssfs.opens

Recommend to view as:
getfattr -n system.hpssfs.opens --only-values <mount point>

Example output:

File 0: fileset=3272835621.465112592 name=./dd_file_cos1
 objid=21318465, fd=0, uid=0, oflags=0x2, count=1

This information includes the Fileset ID, path (relative to Fileset; absolute path may be shown for
HPSS 7.5 and newer), NS Object ID, Client API file descriptor, User ID (of who opened the file),
open flags (0x2 here is O_RDWR), and reference count.

system.hpss.level

The system.hpss.level extended attribute lists information about where data for a file resides in HPSS.
Here is a grammar for the output:

<level-list> => <level-data>
 | <level-list>;<level-data>
 | <empty>

<level-data> => <level-number>:<medium>:<storage-info>:(<vv-list>)<more>

<medium> => disk
 | tape

Extensions

55

<storage-info> => nodata
 | <bytes-at-level>:<stripe-length>:<stripe-width>:<optimum-access-size>

<vv-list> => <vv-data>
 | <vv-list><vv-data>

<vv-data> => <bytes-on-vv>:<rel-position>:[<pv-list>]

<pv-list> => <pv-label>
 | <pv-list>,<pv-label>

<more> => ...
 | <empty>

Example:

0:disk:1024:1048576:1:4194304:(1024:0:[D00001]);1:tape:1024:1048576:1:4194304:(1024:5:[095243])

This file has data on two levels:

• Level 0: Disk

• 1024: bytes on this level

• 1MB: stripe length

• 1: stripe width

• 4MB: optimum access size

• VV 0:

• 1024: bytes on volume

• 0: relative offset

• PV List

• D00001

• Level 1: Tape

• 1024: bytes on this level

• 1MB: stripe length

• 1: stripe width

• 4MB: optimum access size

• VV 0

• 1024: bytes on volume

• 5: relative offset

• PV List

Extensions

56

• 095243

Disk VV Information

Disk VV Information is only available with HPSS >= 7.5.0p1.

9.3.3. trusted Namespace
HPSSFS-FUSE supports arbitrary xattrs in the trusted namespace for super users. These xattrs are
stored in HPSS UDA metadata under the XPath /hpss/fs, e.g. the xattr trusted.name will be located
at the XPath /hpss/fs/trusted.name.

9.3.4. security Namespace
HPSSFS-FUSE supports arbitrary xattrs in the security namespace for all users. However, the
security.selinux, security.ima and security.capability xattrs are currently disabled because FUSE does
not properly support them.

9.3.5. user Namespace
HPSSFS-FUSE supports arbitrary xattrs in the user namespace for all users. Most of these xattrs
are stored in the HPSS UDA metadata under the XPath /hpss/fs, e.g. the xattr user.name will be
located at the XPath /hpss/fs/user.name. The checksum attributes are stored in a separate XPath
for interoperability with other interfaces.

9.4. Checksum
HPSSFS-FUSE Checksum feature is a file-level checksumming mechanism which generates file
checksums when files are created and written. When files are later opened, their contents are verified
against the generated checksum. If the checksum does not match, the file fails to open.

WARNING

The checksum feature will not work without the following environment variables (/var/
hpss/etc/env.conf) set on the Core Server:

• HPSS_API_XMLSIZE_LIMIT=131072 (or greater)

• HPSS_API_XMLREQUEST_LIMIT=131072 (or greater)

These must be set whether using UDA-style, FileHash-style, or Hybrid-style checksum
because the locking mechanism uses UDAs.

9.4.1. Operation
This section will briefly describe the operations of the HPSSFS-FUSE Checksum feature, assuming
the checksum option is enabled.

Extensions

57

File Creation and Inline Checksumming

When a file is created, a new hash context is created which uses the algorithm specified by the cksum
mount option. As data is appended to the file, the data is also appended to the hash context, and the
context’s offset is moved forward. If the file offset of an incoming write is past the current context’s
offset, then a zero-filled buffer is appended to the context in order to fill the gap. These two operations
are inline checksumming. Once the file is closed, the context is finalized and the resulting digest is
stored.

If the file offset of an incoming write is before the current context’s offset, then inline checksumming
is disabled. No more checksum processing will be performed until the file is closed.

File Open Readback

When a file is opened, the entire file is read. The file’s contents are checksummed and verified against
the checksum metadata. If the checksums do not match, the file fails to open. The file can resume
inline checksumming with the context’s offset pointed at the end of the file.

File Close Readback

A file may be read back upon close if any of the following conditions are met:

• Inline checksumming was canceled due to writing prior to the context’s offset (otherwise known as
"random I/O").

• Multiple users have opened the file.

In these cases, the file needs to be read back in order to generate its checksum. Once the file has been
processed, its checksum metadata is updated.

Checksum Readback

Readbacks for the purpose of generating new checksum information can happen in one of two
ways:

1. Generate on open if no checksum information exists and nch=g

2. Generate on close if random I/O or concurrent users is detected

In both cases, we must rely on the data which resides in HPSS to generate the checksum. You
should minimize these cases because the checksum will be generated based on the data read
from HPSS. It is possible that the data could have already been corrupted by the time we read
it, resulting in a checksum that matches the corrupted data. From then on, integrity checks will
continue to pass as long as the generated checksum matches the corrupted data.

Checksum Readback

A checksum readback will cause a file’s atime to be updated. The nocksumatime mount option
can be used to restore a file’s atime after readback completion.

Extensions

58

Supported Algorithms

The HPSSFS-FUSE Checksum feature supports the following hashing algorithms:

• Adler32

• CRC32

• MD5

• SHA1

• SHA224

• SHA256

• SHA384

• SHA512

Concurrency

The HPSSFS-FUSE Checksum feature is designed to consider several forms of concurrency. They are
all implemented by using UDAs to create a persistent lock and persistent leases. When a file is opened
for checksum processing, the mount point acquires a UDA lock and lease. All threads/processes
which open the file on a single mount point have their own context, and so can be viewed as separate
instances from the standpoint of concurrency. Each time a file is opened, the open count for the file
will be incremented. Upon close, the open count will be decremented. If you reach an open count
of zero and detect that other users had opened the file, then you will perform a readback-on-close to
regenerate the checksum metadata. Similarly, readback-on-open will only be performed if you are the
first to open a file.

9.4.2. Configuration

Mount Options

There are several mount options that control the HPSSFS-FUSE Checksum feature:

• cksum — This options chooses which algorithm to use for checksum processing when a new
checksummed file is created. The algorithm is always determined by checksum metadata for
existing checksummed files. This option is required to enable checksum. If it is not specified,
checksum processing will never take place on this mount point. The supported values (case-
insensitive) are:

• cksum=none — Disable checksum; default

• cksum=adler32 — Use Adler32 algorithm

• cksum=crc32 — Use CRC32 algorithm

• cksum=md5 — Use MD5 algorithm

Extensions

59

• cksum=sha1 — Use SHA1 algorithm

• cksum=sha224 — Use SHA224 algorithm

• cksum=sha256 — Use SHA256 algorithm

• cksum=sha384 — Use SHA384 algorithm

• cksum=sha512 — Use SHA512 algorithm

• nch — This option chooses what to do when a non-checksummed file is opened. Otherwise, normal
checksumming operations occur. The supported values are:

• nch=i — Do not perform any checksum processing; allow non-checksummed files to open
successfully. Concurrency bookkeeping will still occur, and if concurrency is detected, this will
still perform readback-on-close checksumming.

• nch=g — Generate a new checksum. This will perform readback-on-open checksumming and
apply the generated checksum to the metadata.

• nch=f — If the file is non-checksummed, the open will fail; default

• rvl — Revalidation timeout: number of seconds that a checksum is considered valid since it was
last successfully verified. The default is 0, so checksums are verified on every open. A non-zero
value allows subsequent opens to succeed without performing a readback if they occur within this
timeout since the last verification by this mount point.

• ckstyle a — Where to store checksum metadata. The supported values are:

• ckstyle=filehash — Store in File Hash metadata

• ckstyle=uda — Store in UDA metadata

• ckstyle=hybrid — Store in both File Hash and UDA metadata; default

Relation to Other Mount Options

Readbacks occur separately from normal file activity. Due to this, some mount options apply
differently to readbacks.

• [no]stage — Has no effect; readbacks always stage the file

• [no]stagetape — If nostagetape is set, files that are on tape cannot be opened for write, and
therefore cannot have their checksums updated. This does not apply to initial file creation in
single level tape classes of service, those files will have a checksum applied to them when they are
created. The stagetape mount option is only valid on HPSS 8.1 or newer.

• eremote_callout — Allows the HPSSFS-FUSE mount point administrator to run arbitrary
operations in response to EREMOTE errors from the nostagetape option. For example, this option
can be used to populate a list of files that need to be staged at some later time. The callout can also
be used for more complex automated processing, such as feeding the requests into a mass recall

Extensions

60

tool, which would notify the users when their request was completed and the data was available
for use. This process could include things like purgelocking the data for some amount of time,
prioritization by user or project, etc. HPSSFS-FUSE passes the following positional parameters to
the callout executable:

• Requesting ID

• Bitfile ID

• Requesting User ID

• Requesting Group ID

• HPSS File Path

Note

For a simple example of a callout with comments, see fuse_callout.ksh in the example folder.

Callout code should avoid risks to HPSSFS-FUSE

The arbitrary callout code should not interact with or pose a risk to HPSSFS-FUSE. For
example, the code should not generate an EREMOTE - the same error condition which is to be
addressed.

9.4.3. External Application Interoperability
HPSSFS-FUSE Checksum is designed to be compatible with other applications which use HPSS
Checksums, including HSI, hpsssum, and HPSSFS-VFS. These programs use a unified UDA path
for storing checksum metadata. The Checksum UDA values are all case-insensitive. There is no
mechanism to ensure coherency between HPSSFS-FUSE and HSI/hpsssum.

9.4.4. Checksum UDA Paths
The following is a list of UDA paths used for checksum and their purposes:

XPath xattr Description

/hpss/user/cksum/checksum user.hash.checksum The hash value of the file using the
specified algorithm

/hpss/user/cksum/algorithm user.hash.algorithm The algorithm used to calculate the hash

/hpss/user/cksum/state user.hash.state The state of the current checksum value.

• Valid — The current checksum is
valid

• Invalid — The digest did not match the
readback digest

• Error — An error occurred when
trying to readback the file

Extensions

61

XPath xattr Description

• NoEntry — Not all of the required
checksum UDAs were present during
the last readback

These values may contain a comment,
delimited by a + character. Example:

Error+Failed to read file

/hpss/user/cksum/

lastupdate

user.hash.lastupdate A UNIX timestamp of the last time
UDAs were updated

/hpss/user/cksum/errors user.hash.errors Number of readback errors since the last
successful readback

/hpss/user/cksum/filesize user.hash.filesize Size of the file

/hpss/user/cksum/app user.hash.app Name of the application which last
updated the checksum UDAs

HPSSFS-FUSE-Specific UDA Paths

The following is a list of UDA paths which are only used by HPSSFS-FUSE and HPSSFS-VFS. They
should not be modified by end users, otherwise unexpected checksum behavior may occur.

XPath Description

/hpss/fs/user.open.total Number of concurrent opens on this file

/hpss/fs/user.mounts/* List of mount points that have this file open

/hpss/fs/user.open.lock Lock to serialize UDA access

/hpss/fs/user.leases/* List of mount point leases. This attribute only applies to HPSS’s
root directory. It is the "heartbeat" of checksum mount points. If a
lease expires, then any lock held by that mount point is invalid.

9.5. Auto Purge Lock
Auto Purge Lock is a feature that prevents files under a given size from being purged after migration.
It is controlled via the autopurgelock mount option.

When enabled, if a file is written to, it becomes a candidate for Auto Purge Lock. Once the file is
closed, if its size is less than or equal to the size specified by the autopurgelock mount option, then
the file is automatically purge locked. The file can still be migrated, but it will not be purged while it
remains purge locked.

9.6. POSIX.1e Draft ACLs
HPSS Access Control Lists (ACLs) are based on DCE ACLs. POSIX.1e Draft ACLs can map almost
directly onto HPSS ACLs. HPSSFS-FUSE supports POSIX.1e Draft ACLs through the xattr interface
(as many Linux filesystems do). Users and administrators should not use the xattr interface directly;

Extensions

62

they can use the getfacl(1) and setfacl(1) commands and the libacl library to manipulate HPSS
ACLs through HPSSFS-FUSE.

HPSS ACLs are always enabled and they cannot be turned off. If no explicit HPSS ACLs exist for an
object, then HPSS will return an ACL based on the UNIX permissions set for the object.

The ability to view and manipulate ACLs is enabled with the acl mount option. If it is not
provided, or the noacl option is provided, attempts to access the system.posix_acl_access
and system.posix_acl_default xattrs will fail, and since the FUSE kernel will enforce UNIX
permissions and HPSS will enforce the HPSS ACLs, effective access will be determined by the
intersection of both, favoring restricted access.

HPSSFS-FUSE maps POSIX.1e Draft ACL entries between the following HPSS ACL entries:

HPSS ACL POSIX.1e Draft ACL Description

ACL_USER_OBJ ACL_USER_OBJ Access rights for the object’s owner

ACL_USER ACL_USER Access rights for the ACL entry’s UID

ACL_GROUP_OBJ ACL_GROUP_OBJ Access rights for the object’s group

ACL_GROUP ACL_GROUP Access rights for the ACL entry’s GID

ACL_MASK_OBJ ACL_MASK Maximum access rights that can be granted by
ACL entries of type ACL_USER, ACL_GROUP_OBJ,
or ACL_GROUP

ACL_OTHER_OBJ ACL_OTHER Access rights for processes that do not match any
other entry in the ACL

Some HPSS ACL entries have no equivalent in POSIX.1e Draft ACL entries. HPSSFS-FUSE will
preserve these HPSS ACL entries where they exist when the HPSS ACLs are manipulated:

ACL_FOREIGN_USER

ACL_FOREIGN_GROUP

ACL_FOREIGN_OTHER

ACL_UNAUTHENTICATED_MASK

ACL_ANY_OTHER

ACL_USER_OBJ_DELEGATE

ACL_USER_DELEGATE

ACL_FOREIGN_USER_DELEGATE

ACL_GROUP_OBJ_DELEGATE

ACL_GROUP_DELEGATE

ACL_FOREIGN_GROUP_DELEGATE

ACL_OTHER_OBJ_DELEGATE

ACL_FOREIGN_OTHER_DELEGATE

ACL_ANY_OTHER_DELEGATE

HPSS ACLs have the following access controls:

Extensions

63

HPSS Access Control

Read (r)

Write (w)

Execute/Search (x)

Control (c)

Insert (i)

Delete (d)

POSIX.1e Draft access controls can be directly mapped to r, w, and x. The remaining access controls
cannot be directly manipulated by using HPSSFS-FUSE. HPSSFS-FUSE will preserve c, i, and d
where they exist when the HPSS ACLs are manipulated. Where new ACL entries are created, the
following will occur:

• When HPSSFS-FUSE creates a default ACL entry, it will set the i and d access controls on the
HPSS_ACL_INITIAL_CONTAINER_ACL.

• When HPSSFS-FUSE creates an ACL_USER_OBJ entry, it will set the c access control.

• When HPSSFS-FUSE creates an ACL_MASK_OBJ entry, it will set the c, i, and d access controls.

When the system.posix_acl_default xattr is requested, HPSSFS-FUSE will use the
HPSS_ACL_INITIAL_OBJECT_ACL for mapping to the POSIX.1e ACL.

See acl(5) for more information.

See ID Mapping and ACLs for specific information regarding ID mapping support for ACLs.

9.7. ID Mapping
ID mapping allows local user and group IDs to be mapped to HPSS user and group IDs. This feature
is controlled by the idmap, uidfile, and gidfile mount options.

9.7.1. idmap=none
This option disables ID mapping, which is the default behavior.

9.7.2. idmap=user
This option maps the mounter’s local UID and GID to the HPSS UID and GID of the principal
provided by the princ mount option.

9.7.3. idmap=file
This option uses the uidfile and gidfile mount options to read ID mapping data. Both files have the
same format: a plain text file with one mapping entry per line. Each line has two fields, delimited by
either a colon ':' or an equal sign '='. Comments can appear anywhere; they start with an octothorpe/
hash/pound '#' and continue until the end-of-line.

Extensions

64

The first field is the local user/group name or numerical ID. The second field is the HPSS user/group
name or numerical ID. Example file:

format is local:hpss or local=hpss
johnsmith=jsmith
mlopez = 1000 # whitespace is trimmed
0=root # this mapping is to itself

9.7.4. ID Mappings and ACLs
When retrieving, storing, updating, or otherwise manipulating ACLs, ID mapping affects each ACL
entry. Since ACLs operate on groups of IDs, this may cause you to end up with an invalid ACL (i.e.
it contains multiple ACL_USER or ACL_GROUP entries with the same uid/gid). In these cases, the
ACL manipulation will simply fail. To avoid this problem, make sure that all HPSS users are mapped.

65

Chapter 10. References
• HPSS Management Guide [http://www.hpss-collaboration.org/online_doc.shtml]

• HPSS Installation Guide [http://www.hpss-collaboration.org/online_doc.shtml]

• HPSS Programmer’s Reference [http://www.hpss-collaboration.org/user_doc.shtml]

http://www.hpss-collaboration.org/online_doc.shtml
http://www.hpss-collaboration.org/online_doc.shtml
http://www.hpss-collaboration.org/online_doc.shtml
http://www.hpss-collaboration.org/online_doc.shtml
http://www.hpss-collaboration.org/user_doc.shtml
http://www.hpss-collaboration.org/user_doc.shtml

66

Chapter 11. Trademarks
Apache® is a registered trademark of Apache Software Foundation.

Arch™ is a trademark of Aaron Griffin and/or Judd Vinet.

CentOS™ is a trademark of Red Hat, Inc.

Debian® is a registered trademark of Software in the Public Interest, Inc.

Gentoo® is a registered trademark of Gentoo Foundation, Inc.

High Performance Storage System™ and HPSS™ are trademarks of International Business Machines
Corporation.

Intel® is a registered trademark of Intel Corporation.

Linux Mint™ is trademarked through the Linux Mark Institute.

Linux® is a registered trademark of Linus Torvalds.

Mageia™ is a trademark of Mageia.org.

Microsoft Windows® is a registered trademark of Microsoft Corporation.

Oracle® is a registered trademark of Oracle International Corporation.

POSIX® is a registered trademark of Institute of Electrical and Electronics Engineers, Inc.

OS/2® and PowerPC® are registered trademark of International Business Machines Corporation.

RHEL® and Fedora® are registered trademarks of Red Hat, Inc.

UNIX® is a registered trademark of The Open Group.

Ubuntu® is a registered trademark of Canonical Ltd.

openSUSE® and SUSE® are registered trademarks of Novell, Inc.

SAMBA™ is a trademark of Software Freedom Conservancy, Inc.

slackware® is a registered trademark of Patrick Volkerding and Slackware Linux, Inc.

SSH® is a registered trademark of SSH Communications Security Corporation.

	HPSSFS-FUSE Administrator’s Guide
	Table of Contents
	
	Chapter 1. Terminology
	Chapter 2. Overview
	Chapter 3. Availability
	3.1. Prerequisites
	3.2. Upgrading from HPSSFS-VFS
	3.2.1. RPM Replacement
	3.2.2. Mount Option Differences
	New HPSSFS-FUSE Options
	FUSE-Specific Options
	Removed Mount Options

	3.2.3. /proc Filesystem

	Chapter 4. Concepts
	4.1. HPSS and the Nature of Hierarchical Storage
	4.2. Architecture
	4.3. How It Works
	4.4. Supported Functionality and Limitations

	Chapter 5. Tuning & Troubleshooting
	5.1. Expectations
	5.2. Testing Procedures
	5.3. Tuning Concepts
	5.3.1. What are we tuning?
	5.3.2. Configuring for efficient HPSS storage

	5.4. Troubleshooting
	5.4.1. Syslog
	5.4.2. Foreground Logging
	5.4.3. HPSS Logs and Alarm & Events Display
	5.4.4. Core Dumps
	abrt.conf
	abrt-action-save-package-data.conf

	5.4.5. Force Unmount

	5.5. Special Notes
	5.5.1. updatedb(8)
	5.5.2. Mounting over SSH

	Chapter 6. Unprivileged Mounts
	Chapter 7. Uses
	7.1. General
	7.1.1. Overview
	7.1.2. Applications
	7.1.3. End-User Access to HPSSFS-FUSE
	cp(1) and mv(1) Commands

	7.2. SAMBA
	7.2.1. Configuration and Code Modification Suggestions

	7.3. NFS
	7.3.1. Overview
	7.3.2. Configuration Suggestions

	7.4. Secure FTP
	7.4.1. Configuration and Code Modification Suggestions

	7.5. Apache
	7.5.1. Overview
	7.5.2. Configuration Suggestions
	7.5.3. Recommendations

	Chapter 8. Mount Options
	8.1. Credentials
	8.2. HPSS Options
	8.3. Checksum Options
	8.4. Other HPSSFS-FUSE Options
	8.5. FUSE Options
	8.6. Kernel Options

	Chapter 9. Extensions
	9.1. ioctl(2) Interface
	9.1.1. Examples
	getcos.c
	getcos.py
	setcoshint.c
	setcoshint.py
	setfsizehint.c
	setfsizehint.py
	setmaxsegszhint.c
	setmaxsegszhint.py
	purge_cache.c
	purge_cache.py
	purge_lock.c
	purge_lock.py
	undelete.c
	undelete.py

	9.2. fallocate(2)
	9.2.1. Preallocate
	9.2.2. Punch Hole

	9.3. Linux Extended Attributes
	9.3.1. Features and Limitations
	Improvements Over HPSSFS-VFS
	Limitations

	9.3.2. system Namespace
	system.hpssfs.info
	system.hpssfs.opens
	system.hpss.level

	9.3.3. trusted Namespace
	9.3.4. security Namespace
	9.3.5. user Namespace

	9.4. Checksum
	9.4.1. Operation
	File Creation and Inline Checksumming
	File Open Readback
	File Close Readback
	Supported Algorithms
	Concurrency

	9.4.2. Configuration
	Mount Options
	Relation to Other Mount Options

	9.4.3. External Application Interoperability
	9.4.4. Checksum UDA Paths
	HPSSFS-FUSE-Specific UDA Paths

	9.5. Auto Purge Lock
	9.6. POSIX.1e Draft ACLs
	9.7. ID Mapping
	9.7.1. idmap=none
	9.7.2. idmap=user
	9.7.3. idmap=file
	9.7.4. ID Mappings and ACLs

	Chapter 10. References
	Chapter 11. Trademarks

