HPSSFS-FUSE Administrator’s Guide

September 23, 2025: High Performance Storage System 11.3

Table of Contents

1. Terminology
2. Overview
3. Availability
3.1. Prerequisites
3.2. Upgrading from HPSSFS-VFS
3.2.1. RPM Replacement
3.2.2. Mount Option Differences
New HPSSFS-FUSE Options
FUSE-Specific Options
Removed Mount Options
3.2.3. /proc Filesystem
4. Concepts
4.1. HPSS and the Nature of Hierarchical Storage
4.2. Architecture
4.3. How It Works
4.4. Supported Functionality and Limitations
5. Tuning & Troubleshooting
5.1. Expectations
5.2. Testing Procedures
5.3. Tuning Concepts
5.3.1. What are we tuning?
5.3.2. Configuring for efficient HPSS storage
5.4. Troubleshooting
5.4.1. Syslog
5.4.2. Foreground Logging
5.4.3. HPSS Logs and Alarm & Events Display
5.4.4. Core Dumps
abrt.conf
abrt-action-save-package-data.conf
5.4.5. Force Unmount
5.5. Special Notes
5.5.1. updatedb(8)
5.5.2. Mounting over SSH
6. Unprivileged Mounts
7. Uses
7.1. General
7.1.1. Overview

7.1.2. Applications

coO J oo U1 g1 g1 U1 U1 W IN

DD DN NN DN DNDNDNDDNDDNDDNDDNDDNDNDN B B)l)) e
BRSO R WN NN R R R R RO O O 000000 NN NN NN RN R RO

7.1.3. End-User Access to HPSSFS-FUSE 24

cp(1) and mv(T) ComMmMANAS 25

7.2, SAMBA . 25
7.2.1. Configuration and Code Modification Suggestions. 25
7.3 NS 26
7.3 1. OVEIVIEW . . . oo 26
7.3.2. Configuration SUggeStioNS 26
T.A4.Secure FTP o 26
7.4.1. Configuration and Code Modification Suggestions. 26
7.5 APaChe. e 27
7.5.0. OVEIVIEW . . . oo 27
7.5.2. Configuration SUggestionS 27
7.5.3. Recommendations 27

8. Mount OPLIONS o 28
8.1. Credentials 28
8.2. HPSS OPLIONS oo 28
8.3. Checksum OPLIONS 29
8.4. Other HPSSFS-FUSE OPtiONS 30
8.5. FUSE OPtiONSo 32
8.6. Kernel OPtiONS. 33
9. EXTENSIONS oo 35
9.1.70ctl(2) Interface. 35
0.1.0. Examples.o 36
BRICOS.C. o ot 36
BRLCOS . DY . oot 37
SEtCOSNINT.C. . ..o 38
SEtCOShINt. DY, . . . 40
setfsizenint.C. e 41
setfsizenint. Py 43
setmaxsegSZNINt.C. 44
setmaxsegSZNINt.PY. 46
PUTEE_CaChE.C. . . o o 47
PULEE_CaChe. DY . . o 48
PUrge_lOCK.C . . 49
PUTEe _lOCK. DY . . oo 51
UNdelete.C . ..o 52
UNdelete Py . . o 55

0.2, TaL10Cate(2) . . oot 56
9.2.1. Preallocate 56
9.2.2. Punch Hole 56

9.3. Linux Extended Attributes 56

9.3.1. Features and Limitations
Improvements Over HPSSFS-VES
Limitations

9.3.2. system Namespace
hls listing tool
system.hpssfs.info
system.hpssfs.opens
system.hpss.level

9.3.3. trusted Namespace

9.3.4. security Namespace

9.3.5. user Namespace

9.4. Checksum

9.4.1. Operation

File Creation and Inline Checksumming

File Open Readback
File Close Readback
Supported Algorithms
Concurrency
9.4.2. Configuration
Mount Options
Relation to Other Mount Options

9.4.3. External Application Interoperability

9.4.4. Checksum UDA Paths
HPSSFS-FUSE-Specific UDA Paths
9.5. Auto Purge Lock
9.6. Purge on Migrate
9.7. POSIX.1e Draft ACLs
9.8. ID Mapping
9.8.1. idmap=none
9.8.2. idmap=user
9.8.3. idmap-=file
9.8.4. ID Mappings and ACLs
1. References
10. Trademarks

56
56
56
57
58
58
59
59
61
61
61
61
62
62
62
62
63
63
63
63
64
65
65
66
66
67
67
68
69
69
69
69
70
71

Copyright notification

Copyright © 2015-2025 International Business Machines Corporation, The
Regents of the University of California, Triad National Security, LLC, Lawrence
Livermore National Security, LLC, National Technology & Engineering Solutions
of Sandia, LLC, and UT-Battelle.

All rights reserved.

Portions of this work were produced by Lawrence Livermore National Security, LLC, Lawrence
Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344 with the U.S.
Department of Energy (DOE); by the University of California, Lawrence Berkeley National
Laboratory (LBNL) under Contract No. DE-AC02-05CH11231 with DOE; by Triad National Security,
LLC, Los Alamos National Laboratory (LANL) under Contract No. 89233218CNA000001 with DOE; by
National Technology & Engineering Solutions of Sandia, LLC (NTESS), Sandia National Laboratories
(SNL) under Contract No. DE-NA0003525 with DOE; and by UT-Battelle, Oak Ridge National
Laboratory (ORNL) under Contract No. DE-AC05-000R22725 with DOE. The U.S. Government has
certain reserved rights under its prime contracts with the Laboratories.

DISCLAIMER

Portions of this software were sponsored by an agency of the United States Government. Neither
the United States, DOE, The Regents of the University of California, Triad National Security, LLC,
Lawrence Livermore National Security, LLC, National Technology & Engineering Solutions of
Sandia, LLC, UT-Battelle, nor any of their employees, makes any warranty, express or implied, or
assumes any liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Trademark usage

High Performance Storage System is a trademark of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.

IBM and Db2 are trademarks or registered trademarks of International Business Machines
Corporation.

UNIX is a registered trademark of the Open Group.

Linux is a registered trademark of Linus Torvalds in the United States and other countries.

Chapter 1. Terminology

This document uses the following terminology:

Term Description
FUSE Filesystem in USErspace
HPSSFS-FUSE High Performance Storage System™ File System FUSE interface

HPSSFS-VFS High Performance Storage System File System (colloquially known as "Kernel
VES")

HPSSFSD HPSSFS userspace daemon
HPSSFS-LKM HPSSFS Linux kernel module

Chapter 2. Overview

The High Performance Storage System File System FUSE (HPSSFS-FUSE) interface provides users
with a standard POSIX® filesystem view of HPSS™ files. Filesystem in Userspace (FUSE) is a
mechanism that allows virtual filesystems to be implemented in userspace.

The HPSSFS-FUSE interface is supported only on Red Hat® Enterprise Linux® (RHEL®) "' It enables
HPSS to function as an additional supported filesystem type for Linux users. It allows users to
access HPSS-resident files with standard POSIX semantics employed by local Linux filesystems,
such as ext3 and network filesystems such as NFS. Linux users can mount an HPSS directory,
traverse the directory structure, and access files as though operating on a local Linux filesystem.
Access is achieved by means of POSIX function calls, such as open(2), read(2), write(2), and UNIX®
commands such as cp(1). Like NFS, HPSSFS-FUSE does not require local storage resources, but is
rather a convenient interface to HPSS.

The HPSSFS-FUSE interface enables existing software to access HPSS files without modification. For
example, agent software, such as SAMBA™, Secure FTP, Apache®, and even native Linux NFS may
be set up to access HPSS files using the HPSSFS-FUSE interface. Thus, the HPSSFS-FUSE interface
becomes a means to utilize a wide variety of agents for local and remote network-connected users.
Multiple agents may be employed, and even multiple instances of the same agent. For example, a
site may employ several agent computers providing NFS and several others providing SAMBA.
However, in most situations, the use of multiple agent computers will not be necessary.

Thus, the HPSSFS-FUSE interface serves as a high-performance, virtually-local interface for trusted
Linux client nodes, such as those in a high-performance computational cluster. At the same time, it
can serve as a convenient means of extending HPSS access to users outside of the main cluster, with
security performed by agent software.

The HPSSFS-FUSE interface does not change the nature of the underlying HPSS
hierarchical storage management software. The intention of HPSSFS-FUSE is to

A provide a convenient interface for importing and retrieving files, not to facilitate
real-time file editing. It is important to understand the limitations of the
underlying HPSS system still apply when using HPSSFS-FUSE.

Most HPSS sites are set up to migrate less recently used files to tape. Although the HPSSFS-FUSE
interface does employ local caching and readahead logic to enhance performance, the overall
operational concept for the system must take into account the latency of accessing files from tape.

HPSS offers optional SAN enablement, referred to in HPSS documentation as HPSS 3rd Party SAN
(SAN3P). SAN3P enables data to move between clients and HPSS disk without passing through an
intermediate computer, but under the control of HPSS. SAN3P therefore can provide significant
throughput advantages for sequential transfer of data between clients and HPSS disk. HPSSFS-FUSE
supports SAN3P transfers through HPSS, see san flag in mount options.

This document is intended to provide administrators and sophisticated ("power") users with
information on the installation, tuning, and use of HPSSFS-FUSE. Limitations as well as features of
the HPSSFS-FUSE interface are explained so that existing best practices can be employed and new
best practices discovered.

[1] HPSSFS-FUSE is only officially supported on RHEL® (Intel® and PowerPC® versions.). Minimal testing has been performed on
all major Linux distributions (Arch Linux™, CentOS™, Debian®, Fedora®, Gentoo®, Linux Mint™, Mageia™, openSUSE®, Oracle®
Linux, slackware®, SUSE®, and Ubuntu®), but only RHEL goes through a full testing cycle.

Chapter 3. Availability

HPSSFS-FUSE is available as a separate package from HPSS. It can be obtained from your HPSS
support representative.

3.1. Prerequisites

This section describes the prerequisite software packages required by HPSSFS-FUSE and provides
information to obtain them. Refer to the HPSSFS-FUSE Release Notes for specific versions.

Prerequisite
GCC
FUSE (libfuse)

HPSS Client
Library

FUSE kernel
module

libattr
libacl
OpenSSL

Description
Freely available C/C++ compiler used to generate the HPSSFS application.

One of the two parts of the FUSE system, libfuse provides the interface for
communicating with the FUSE kernel module.

Interface for communicating with the HPSS system.

Provided as part of the regular kernel repositories, the FUSE kernel module
exposes file system requests to be handled by custom file systems.

Provides library functions for manipulating extended attributes.
Provides library functions for manipulating access control lists.

Open source library which, among other things, provides a cryptography library
used for generating checksumes.

3.2. Upgrading from HPSSFS-VFS

3.2.1. RPM Replacement

HPSSFS-FUSE is designed to replace HPSSFS-VFS. Consequently, the hpssfs-fuse RPM conflicts with
the hpssfs and hpssfs-lkm RPMs, which must be uninstalled prior to installing the hpssfs-fuse RPM.

3.2.2. Mount Option Differences

See the Mount Options section for more specific information.

New HPSSFS-FUSE Options

These are options that are specific to HPSSFS-FUSE and differ from HPSSFS-VFS.

Option

acl, noacl

attrtimeo

auth

authmech

authtype

autopurgelock

ckstyle

entrytimeo

nfs4

purgeonmigr,

nopurgeonmigr

shm, noshm

stagetimeo

stream,
nostream

stickytape,
nostickytape

Description

These options enable and disable POSIX ACLs, which remain unavailable with
HPSSFS-VEFS.

This option consolidates HPSSFS-VFS’s acregtimeo and acdirtimeo options.

This option replaces HPSSFS-VES’s keytab option in order to better reflect its
meaning.

This option replaces HPSSFS-VFS’s auth option in order to better reflect its
meaning.

This option replaces HPSSFS-VES’s keytype option in order to better reflect its
meaning.

This option specifies the maximum size of files to auto purge lock. See Auto Purge
Lock for more specific information.

This option changes where checksum metadata is stored (UDA and/or File Hash).
The HPSS File Hash feature remains unavailable to HPSSFS-VFS.

This option specifies the cache timeout for names.

This option provides optimizations for NFSv4 exported HPSSFS-FUSE mount
points. See NFS for more specific information.

These options enable or disable the purge on migrate functionality. See Purge on
Migrate for more information.

These options enable shared memory data transfers between HPSSFS-FUSE
mount points and HPSS Movers, which were previously unavailable with HPSSFS-
VES.

This option replaces HPSSFS-VFS’s offlnsecs option in order to reflect its meaning
more clearly.

These options replace HPSSFS-VFS’s rpages, wpages, and iomax mount options.
nostream is equivalent to stream=0, which forces all I/O to be unbuffered. The
value is measured in megabytes instead of pages.

These options determine if the sticky bit should be reported as set for files

FUSE-Specific Options

These are options which are common to all FUSE filesystems.

Option

allow_other,
allow_root

auto_unmount

debug

max_backgrou
nd

congestion_thre
shold

readdirplus

Description

In order to mimic the previous HPSSFS-VFS’s behavior, HPSSFS-FUSE mount
points should be mounted by the root user and use the allow_other mount option.
See the Unprivileged Mounts section for more specific information.

If the HPSSFS-FUSE process crashes or is killed or otherwise dies, the mount point
will automatically be unmounted. The default behavior is to remain mounted,
and all subsequent requests to that mount point will fail.

This option conflicts with HPSSFS-VFS’s debug option, and so its meaning has been
removed from HPSSFS-FUSE and now is passed to FUSE itself.

This option controls the number of background threads available for readahead
and asynchronous I/O operations. The default value is 100.

This option controls the number of threads required to be busy before the file
system is considered congestion. The default value is 75% of the max_background
value.

This option allows FUSE to collect directory entries and their attributes together.
It is similar to HPSSFS-VFS’s rattr option.

Removed Mount Options

These options were removed or replaced in HPSSFS-FUSE.

Option

acregtimeo,
acdirtimeo

auth

debug

fcsize

keytab

keytype

maxrqst

nflushd

offinsecs

rattr

rpages, wpages,
iomax

rtimeo, wtimeo

stack

Description

These options are replaced by attrimeo.

This option previously specified the authentication mechanism. It has been
replaced with the authmech option.

This option previously specified a level of debug information to log. Since FUSE
itself has a debug option, this option refers to that instead. All of HPSSFS-FUSE’s
logging is controlled by the trace option.

This option previously specified the size of files (in bytes) that will have all data
cached on first access. There is no mechanism to do this in earlier versions of
FUSE, so this feature may be added in a future release, supporting current
versions of FUSE.

This option previously specified the HPSS authenticator. Since the authenticator is
not necessarily a keytab (it can be a keyfile or password, for example), it has been
replaced with the auth option (short for authenticator).

This option previously specified the HPSS authenticator type. It has been replaced
with the authtype option.

This option previously specified the maximum number of concurrent requests.
The FUSE library spawns threads to service requests, so this option is obsolete
and consequently has been removed.

This option previously specified the number of kernel threads used to flush data.
Since HPSSFS-FUSE is implemented in userspace only, every open file gets its own
flush thread, and this option has been removed.

This option has been replaced with the stagetimeo option.

This option previously specified whether to fetch attributes along with directory
entries (similar to the readdirplus option). However, this has been replaced with a
heuristic that uses access patterns to determine the behavior. Consequently, this
option has been removed.

These options have been replaced with the stream option.

These options previously specified how many seconds to wait for additional page
requests before issuing I/O to HPSS. Since the FUSE kernel module handles the
page cache, these options are obsolete and consequently have been removed.

This option previously specified the stack size for threads. Since the FUSE library
spawns threads as necessary to service requests (as opposed to how HPSSFSD
preallocated all service threads), this option is obsolete, and consequently has
been removed. Any requests which fail to spawn threads due to memory
limitations will receive out-of-memory errors.

Option Description

wtrytimeo This option previously specified how many seconds to continue trying failed
writes. Since we must send a response to the FUSE kernel module, write failures
are never retried, and this option is obsolete and consequently has been removed.
Write failures are immediately returned to the end-application.

3.2.3. /proc Filesystem

HPSSFS-VFS provided a /proc filesystem interface for inspecting various stats for a particular
mount point. The information was located in the directory /proc/fs/hpssfs/<pid> and contained the
following files:

File Description

info Provided a list of settings and other information

opens Provided a list of open files

io Provided a list of pending I/0

requests Provided a list of pending requests

trace Yielded current trace value; writable in order to change the trace value at
runtime

HPSSFS-FUSE is unable to create entries in the /proc filesystem (this can only be done within the
kernel), and so this mechanism is instead provided via Linux extended attributes. See Linux
Extended Attributes for more specific information.

10

Chapter 4. Concepts

At a high level, the HPSSFS-FUSE interface is very simple and straightforward. Almost all POSIX-
based operations one can perform on a Linux filesystem can also be executed on an HPSSFS-FUSE-
mounted filesystem. Even so, there are some exceptions. This section covers characteristics about
HPSSFS-FUSE that should be understood by those considering its use in their environment.

4.1. HPSS and the Nature of Hierarchical Storage

While readers of this document are presumed to be familiar with HPSS, we will review here some
HPSS concepts that are particularly relevant to the HPSSFS-FUSE interface. HPSS is a hierarchical
storage management (HSM) software designed to manage and access petabytes of data at high data
rates. HPSS is most cost effective for archives larger than 10PB. While appearing to the user as a
disk filesystem, HPSS manages the life cycle of data by moving inactive data to tape and retrieving
it the next time it is referenced.

HPSS is a distributed solution with file attributes stored on the Core Server, data stored on Mover
systems, and HPSSFS-FUSE applications running on client nodes, among other client interfaces. The
cluster aspect of HPSS combines the power of multiple computer nodes into a single, integrated
storage system. The computers that comprise the HPSS platform may be of different makes and
models, yet the storage system appears to its clients as a single storage service with a unified
common name space.

When users access HPSS via the HPSSFS-FUSE interface or one of the other HPSS interfaces such as
FTP or the Client AP], they are presented with a UNIX-like filesystem view of their data. In addition
to files, HPSS supports directories, symbolic and hard links, and attributes compatible with any
modern UNIX filesystem. Unlike a conventional disk-based filesystem, however, HPSS must deal
with the latency of accessing data on both disk and tape. Access to data may be delayed as tapes
must be mounted and queued with other tape drive/library activities. Data is stored sequentially on
tape media, which is different from disk-based storage that provides random access to data. While
interfaces may provide conveniences and hide certain aspects of this behavior, fundamentally, the
system is an HSM and those using it must understand the qualities and limitations of an HSM.

Linux provides filesystem caches for file attributes and data blocks to improve performance by
temporarily storing requested information in kernel buffers. This improves performance for
multiple requests of the same information or, in the case of readahead logic, sequential access to
file data. The expense is a weak coherency between multiple clients and mount points.
Performance gains are dependent upon configuring memory resources based on number of
threads, concurrent file access, file sizes, and available system memory.

Like with other HPSS client interfaces, the configuration of HPSS is critical for optimal
performance. Configuring HPSS with correct Storage Classes, Hierarchies, Classes of Service,
filesets, junctions, and providing appropriate mount points will determine performance through
the HPSSFS-FUSE interface. Generally, different Classes of Service are created in HPSS to balance
performance with different storage media characteristics and different file sizes. Applications must
understand where in the HPSS hierarchy files in different Classes of Service are located and expect
different performance. For instance, files that have to be staged from tape levels of a hierarchy will
encounter more latency compared to files at a disk level. Storage efficiency within HPSS is

11

determined by Storage Class segment size and the typical file sizes stored. It is also determined by
the heirarchy makeup. Applications must consider this when storing files using the HPSSFS-FUSE
interface.

So, how does this affect end users? One example is using the common UNIX command grep(1). On a
local Linux filesystem, such a command can be invoked recursively on a directory tree with little to
no concern. However, when used on an HPSSFS-FUSE mount, such a command is unaware of the
current state of the files' contents and will proceed to stage any file that is not stored in HPSS disk
cache. If a user’s command searches through hundreds or thousands of files that must be staged
from tape, not only will it potentially take a very long time for the command to complete for the
user, but there can be a detrimental effect on other users of the HPSS system as tape drives are kept
busy servicing this one command. That is why it is important for administrators and end users to
understand how HPSSFS-FUSE works.

Remember the following when planning to use or introduce HPSSFS-FUSE to a site
environment:

A * File attributes are readily available, but file contents may not be.

» HPSSFS-FUSE has the look and feel of a filesystem, but it is really an interface
to HPSS, which is an HSM.

4.2. Architecture

HPSSFS-FUSE is glueware that sits between HPSS and FUSE. It uses FUSE to represent HPSS as a
virtual filesystem.

Figure 1 shows the Linux client software. This software is separated into userspace and kernel. The
userspace is shown containing three types of client applications: a user application, a user shell
such as ksh(1) or bash(1), and agent software such as an NFS or SAMBA server. The VFS is the Linux
Virtual Filesystem Switch, which forwards filesystem access to the appropriate filesystem drivers,
such as FUSE, NFS, and ext3. HPSSFS-FUSE retrieves filesystem requests from the FUSE kernel
module via libfuse, and forwards them to HPSS using the HPSS Client APIL.

The HPSS Client API is both a user interface in its own right and a building block from which other
interfaces are created. The HPSS Client API supports the separation of command and data paths.
The command path is usually a TCP/IP path, and the data path may be a separate TCP/IP data path,
or it may be implemented as a SAN such as fibre channel. HPSS documentation refers to the SAN
option as SAN3P (SAN 3rd Party), where the client application is the 3rd party performing the SAN
I/0. HPSSFS-FUSE is able to use SAN3P transfers in order to take advantage of the direct client-to-
disk data transfer mechanism.

SAN3P

There is a security vulnerability associated with the use of SAN3P. If a user is root
on a machine which has access to the SAN (e.g. a client machine), then that user

A has the potential to access or destroy fiber-channel connected disk storage. Two
areas of concern:

1. Verification that only authorized users (usually limited to only root or hpss) are

12

granted read and write access to these resources.

HPSS administrators should be aware that machines, possibly owned or
managed by other groups, which are added to the SAN to facilitate the use of
SAN3P transfers will have access to all data on disk and tape resources. If those
systems are compromised, or if there are individuals authorized for system
privileges on those particular machines, but not necessarily authorized for
HPSS administrative access, there is the potential for access and/or damage to
HPSS data. These are inherent limitations of SAN implementations that have
not yet been addressed by the industry and cannot be remedied by HPSS.

directly

User applications
(including IRODS and
FileMet®) use
HPSSFS-FUSE

User program

Lser shell

Agent server

| glibc

glibc

glibc

Data

Optional
SAMNIP

HPS5FS-FUS

HPSS HPSS
Mover Core

Figure 1. HPSSFS-FUSE Components

Based on experience in the field, we recommend that separate HPSSFS-FUSE mount points exist for
each major application that resides on top of it. When used in a gateway configuration using agent
software, there is no requirement for separate mount points, but for performance or load-
balancing it may be necessary. The separate mount points allow for easier control and
troubleshooting of the system.

13

4.3. How It Works

Here is an example of what happens when a user tries to open a file:

1
2.

10.

Application issues an open(2) call on a file.

The Linux VFS provides common filesystem functionality, then passes control to the FUSE
kernel module.

libfuse retrieves the request from the FUSE kernel module, and calls a callback function in
HPSSFS-FUSE to service the request.

HPSSFS-FUSE uses the HPSS Client API to open the file.

The HPSS Core Server performs the file open. If permissions, path, and attributes are valid, the
file is opened.

The HPSS Client API receives a response from the HPSS Core Server indicating success or
failure. This status is returned to HPSSFS-FUSE.

HPSSFS-FUSE replies to the FUSE kernel module via libfuse.
The FUSE kernel module returns the information back to the Linux VFS.
The Linux VFS returns the system call.

Application receives status from the system call and acts accordingly.

4.4. Supported Functionality and Limitations

Mount Options
The following references HPSSFS-FUSE mount options.

* Most HSM users access file data in sequential order. The HPSSFS-FUSE interface implements a

14

sequential readahead algorithm to increase the probability that the next requested read will be
in the HPSSFS-FUSE buffer cache. The following should be understood about this algorithm:

o For performance reasons, when files are read sequentially, HPSSFS-FUSE will read the next
sequential portion of a file before an application requests it. This helps reduce the read
latency to the application. The size of the portion ranges from 128KB up to stream
megabytes. It starts out at 128KB, and then it doubles for each successive read, with the
maximum readahead window of stream megabytes. If the read requests are not sequential,
the readahead is not performed. If the application read requests do not read the entire
readahead buffer, the readahead buffer size will remain the same.

o The default stream value is 8MB. This means the readahead algorithm will consume 8MB for
every open file. The system RAM should be sized for the maximum readahead buffersize
multiplied by the number of concurrent files being read.

- For maximizing performance, the application should issue sequential read requests that are
equal to the maximum readahead buffer size.

o Files that are opened with 0_SYNC or 0_DIRECT will not use buffered I/O, and therefore will not
use the readahead algorithm.

o Using a stream option with the value 0 will cause all open files to use unbuffered I/O, and
therefore will not use the readahead algorithm.

o A writeback algorithm is in place similar to the readahead algorithm. It shares the same
buffer with the readahead algorithm.

- HPSSFS-FUSE will attempt to abort HPSS requests when an open, write or read is
interrupted. For example if you are writing a file in HPSSFS-FUSE and interrupt
the write with CTRL-C, then HPSSFS-FUSE will attempt to abort the write in HPSS.

When a new subsystem is added to HPSS, HPSSFS-FUSE will need to be remounted
A in order to allow aborts to be sent to that subsystem and to update the XML limits
that HPSSFS-FUSE uses.

HPSSFS-FUSE does not provide file locking capability. This may lead to unexpected
A behavior in some applications or in instances where multiple users are accessing
the same file.

* The HPSS maximum for 10,000 storage segments applies. When storing a file using HPSSFS-
FUSE, use a Storage Class that supports a storage segments size that can accommodate the
intended size of the file. The Storage Class used is dependent on the mount option cos=ID and/or
the fileset where the file is being stored. An additional consideration is the mount option
maxsegsz.

* The HPSS maximum for 2,000 fragments applies. Fragments are sections of data separated by a
hole where an application has not written data. Using the 1seek(2) system call, an application
can skip around in a file to write data at various offsets. HPSS does not initialize or store data
for these holes; metadata is maintained to identify the holes. When a file reads at an offset that
is a hole, the data values are binary zero.

* The Linux df(1) command statistics represent the entire Class of Service (COS) statistics. The
sum of all Storage Classes in the COS Hierarchy is reported. The reported free space may not
represent the amount of space that can be written, especially when there are multiple levels in
the Hierarchy. A mount point may not even show up in the df(1) listing if the total storage for its
COS is 0 (e.g. a dummy default COS).

» Security: There are no restrictions from the Core Server on which nodes can connect via
HPSSFS-FUSE. Any node that can install the HPSS Client API can access HPSS.

o HPSS provides a restricted user capability for blacklisting users based on User ID from
connecting to the system. This only affects which users can be used as the principal for login
credentials, so blacklisted users may still use HPSSFS-FUSE when using the hpssfs principal.
See "Restricting user access to HPSS" in the HPSS Admin Guide for more information.

o Keytabs are commonly used to facilitate establishment of HPSS credentials. It is
recommended to use a keytab for the hpssfs principal for use by HPSSFS-FUSE. This keytab
should be protected to prevent unauthorized access by unprivileged users.

* FIFOs and other special devices: HPSS and therefore HPSSFS-FUSE does not support named
pipes (FIFOs), character device files, and block devices; use a local filesystem for these purposes.

* Kernel caching and data buffering: The Linux kernel caches directory and file attributes. This

15

may prevent retrieving up-to-date attributes from HPSS that are updated by other HPSS clients
(including other HPSSFS-FUSE mounts on the same machine). Different clients may receive
different information based on what is cached and when changes are made. The benefits of
caching attributes and buffering data are to minimize latency to the application by not waiting
to retrieve data from HPSS. Direct I/O can be used to bypass the data buffer cache, but every
read and write will require transferring data from HPSS. The attribute cache timeout is
controlled by the attrtimeo mount option. The name cache timeout is controlled by the
entrytimeo mount option. These caches can be disabled by setting their values to 0. This will
increase coherency at the expense of performance.

The caching mechanisms help reduce latencies, but cause a weak coherency concerning
external applications.

The data buffering mechanisms help increase throughput, but at the expense of reduced
coherency. For transaction-sensitive applications where data written to HPSS using the HPSSFS-
FUSE interface requires guaranteed updates, the program must do one or more of the following:

o Rely upon fsync(2) to flush data buffers to HPSS.
> Open a file with the 0_SYNC or 0_DIRECT flags to flush data on every write.

o Rely on the return value from the close(2) function as indication of successfully flushed
data.

Otherwise, a successful return code from the write(2) system call is not a guarantee that all data
has been completely flushed to HPSS at that point in time. The application programmer must
balance the performance advantages of buffering versus the requirements for data
synchronization between their application and HPSS. This behavior is consistent with the POSIX
standard, and true of both local storage resources (e.g. disk partitions) as well as remote storage
such as HPSSFS-FUSE and NFS.

inconsistent results due to caching. Caching can be disabled at the cost of reduced

i As stated above, concurrent file access across mount points may result in
performance.

* The HPSSFS-FUSE Gateway is essentially a "store and forward" machine that should be taken

into consideration when sizing any Linux gateway computers.

» HPSSFS-FUSE supports a number of extensions to the POSIX library interface to enable users to

16

control specific HPSS attributes, such as setting the Class of Service (COS) value. The list of
extensions and how to use them is documented in the Extensions section.

Chapter 5. Tuning & Troubleshooting

Like most systems, HPSSFS-FUSE will require tuning to allow users/applications to perform
optimally. The underlying HPSS configuration, network topology, and client systems can affect
performance and the operation of the system. This section covers the major tuning components of
HPSSFS-FUSE, what to look for when analyzing the performance of the system, and what
troubleshooting resources and procedures are available for the administrator to use in diagnosing
problems.

5.1. Expectations

Administrators and users should expect HPSSFS-FUSE to perform similarly to the HPSS Client APL.
In some cases the performance may be better because of the kernel caching (namespace attributes
and file data), but in general the transaction and transfer performance will be in-line with HPSS
Client API because HPSSFS-FUSE uses the API for its interaction with HPSS. Therefore, it is
important to ensure that performance as measured by tools, such as the API Example code, are
consistent with baseline numbers documented during the deployment of the system. The HPSS Test
Plan and Results report or other similar testing should be reviewed and compared with results
measured against the current system. If the performance of the HPSS Client API on the HPSSFS-
FUSE machine is not up to expected rates, then correcting those deficiencies should be addressed
before focusing on HPSSFS-FUSE performance.

5.2. Testing Procedures

During the initial deployment of an HPSS system, the support representative conducts a number of
functional and performance tests on the system. These tests include procedures for checking the
client interfaces to be used at a given site, including HPSSFS-FUSE, if configured at the time of the
installation. The results from these tests are used as a baseline for comparing performance of the
system when changes are made to HPSS or the client environment, or when troubleshooting a
performance problem.

The first task is to repeat those same HPSSFS-FUSE tests to compare against the baseline results. A
high-level summary of some tests that might be exercised are outlined below:
 Directory listing of namespace.
o 1s(1)
o find(1)
» Simple file/directory operations.
o mkdir(1)
o rmdir(1)
o touch(1)
o unlink(1)
o mv(1)

17

o 1n(1)
o cd(1)
* Copy multiple groups of files into and out of HPSSFS-FUSE.
* Rerun the HPSSFS-FUSE performance tests to obtain new baseline results.

« Use a script to touch(1) numerous files in a directory, then perform an rm -rf * ™ at the
directory level to delete all the files created.

» Use a script to exercise HPSSFS-FUSE for an extended period (24-48 hours). This can be as
simple as copying files into the HPSSFS-FUSE mount point. Multiple copy operations should be
performed from a single script, and if possible, multiple clients should be used.

* Perform tar(1) and gzip(1) on files located in the HPSSFS-FUSE mount point.
* Perform dd(1) into and out of the HPSSFS-FUSE mount point.
» Use a basic C program which creates, opens, writes, and closes files.

* Use a basic C program which reads the previously created files. If possible, read
migrated/purged files (files on tape with no copy in the HPSS disk cache), to monitor how
HPSSFS-FUSE handles staging.

5.3. Tuning Concepts

5.3.1. What are we tuning?

How one plans to use HPSSFS-FUSE is key to what should be done to tune the system. Is the usage
primarily oriented to access the namespace and file attributes? Is the goal to optimize data 1/0?
What file sizes are expected? Are there a few users or many? How is load balanced? These and
other questions need to be considered before starting the tuning process. If there are divergent
requirements, then multiple HPSSFS-FUSE mounts may be necessary to optimize a particular access
pattern.

Consider making the adjustments only when necessary. Likely, it will take some experimentation to
get the right set of options. If usage conditions or requirements change, tuning options may need to
be reevaluated and adjusted.

5.3.2. Configuring for efficient HPSS storage

HPSS stores portions of a file in what are called storage segments. Since each storage segment has to
be tracked, there is metadata created for each storage segment. To prevent individual files from
monopolizing HPSS metadata space, there is a maximum number of segments that HPSS will allow
for each file (10,000 is the maximum). Another important aspect is if the amount of data written to
a storage segment is less than the storage segment size, the remaining space cannot be used for
anything else (it is wasted space). The size of a storage segment is determined by the Class of
Service (COS) being used and whether the mount option maxsegsz is specified.

To help with usage patterns, HPSSFS-FUSE allows you to configure mount points for a specific COS
or to use the maximum segment size. By specifying a specific COS for a mount point, you can have
some control over the segment size allocation and which Storage Class will be used when an

18

application creates a file. The exception to this rule is if the file is created in a fileset. In that case,
the COS set for the fileset will be used instead of the mount option COS if it is not set to NONE. The
COS has an "Allocation Method" where you can choose either Fixed, Maximum, or Variable. Using
the correct allocation method will determine how efficiently HPSS stores a file.

* Fixed usually will default to the minimum segment size for the Storage Class. This is most
efficient when the file sizes are typically less than or very near to the Storage Class minimum
segment size. It is least efficient when the file sizes are typically many multiples of the
minimum segment size and the difference between minimum segment size and maximum
segment size is large.

* Maximum will default to the maximum segment size for the Storage Class. This is most efficient
when the file sizes are typically close to or greater than the maximum segment size. It is least
efficient when the file sizes are typically very small because the maximum segment size will be
allocated and only a very small part of the segment will be used.

» Variable allows for a progression of larger segments for each segment. This method is often
referred to as Variable Length Segment Size (VLSS). It was introduced to help when the file sizes
vary greatly and the difference between the minimum and maximum segment sizes for a
Storage Class is large. With each successive storage segment allocated being double the size of
the previous (up to the maximum segment size), the efficiency is greatly improved. There are
fewer segments (minimizing the metadata overhead) and less wasted space (versus the
Maximum allocation method), which allows much larger files than using the Fixed allocation
method. To minimize the unused space in the last segment of the Variable allocation method,
the segment size is reduced to the smallest multiple of the minimum segment size.

The top level Storage Class definition determines the actual minimum and maximum segment sizes
to be used. Configuring the mount point to a COS which uses a Storage Class that is appropriate
based on the sizes of the files to be created will greatly influence the HPSS efficiency. The Storage
Class will also greatly influence the allowable sizes of files that can be stored. As indicated above,
the Fixed allocation method will use the Storage Class minimum segment size. This will limit the
maximum file size to be the Storage Class minimum segment size multiplied by the maximum
number of Bitfile segments that HPSS can support. HPSSFS-FUSE does support an override of using
the Fixed allocation method minimum segment size, however the override is to use the Storage
Class maximum segment size (from one extreme to the other).

HPSSFS-FUSE does allow an application to override the mount point specification for a COS. The
caveat is an extra system call has to be made to HPSSFS-FUSE by the application to accomplish this.
A limitation of using standard Linux applications (e.g. cp(1) command) is they do not support
setting the COS explicitly. Because of this, it is critical to understand application file creation
patterns and setting up COS and Storage Class that support the applications. It may be necessary for
multiple mount points to be used to get the COS and Storage Class combinations correct for
different application usage patterns. For this reason, it is sometimes best to use multiple HPSSFS-
FUSE mounts to provide different optimization options to the same HPSS namespace.

See "Storage Configuration" in the HPSS Admin Guide for more information.

19

5.4. Troubleshooting

There are several sources of information available for the administrator to look at when
troubleshooting an HPSSFS-FUSE problem. The following section documents where this
information is stored and what can be done to monitor and control the level of output.

Client API

Keep in mind the following about HPSSFS-FUSE: it is built upon the HPSS Client
APIL If there are basic communication problems or performance issues with the
- HPSS Client API, there is little point to troubleshooting HPSSFS-FUSE itself. It is
recommended that the administrator perform a set of basic operations using scrub
or the API example programs to verify the function and performance of the
system. There may very well be problems with HPSSFS-FUSE in the end, but
troubleshooting the operating system and HPSSFS-FUSE prerequisites commonly

saves a lot of time and effort.

Because HPSSFS-FUSE is built upon the HPSS Client API, it is useful to set the API debug/logging
environment variables (/var/hpss/etc/env.conf):

* HPSS_API_DEBUG=<level>
o HPSS_API_DEBUG_PATH=<stderr|/path/file>

HPSS_API DEBUG

The HPSS_API_DEBUG value can be increased up to 7 to produce output that is
more detailed. HPSSFS-FUSE will need to be restarted for the environment
variables to take effect, meaning the mount points will have to be remounted.

See "Tuning and Troubleshooting" in the HPSS Programmer’s Reference for more information.

5.4.1. Syslog

The most important resource for monitoring HPSSFS-FUSE mount points is the Linux syslog. Linux
system error and diagnostic messages are logged to /var/log/messages. This file is only directly
readable by root; any non-privileged user can view it using the dmesg(1) command. When this file
grows larger than some configured size (see logrotate(8)), it is rotated to a file name that is post-
fixed with an integer value that indicates its relative age.

HPSSFS-FUSE has a number of logging message classes. These include ERROR and 5 TRACE levels.
The trace class messages must be enabled in order to appear in the syslog. The trace level is
controlled by a mount option and at runtime via the system.hpssfs.trace xattr. The ERROR class is
intended to indicate a potentially disastrous error. The TRACE class is intended to give increased
level of detail for diagnosing issues, and should be set to 0 except when directed otherwise by HPSS
support.

5.4.2. Foreground Logging

If the -f mount option is used, HPSSFS-FUSE will run in the foreground. All HPSSFS-FUSE ERROR

20

and TRACE messages will be printed to stderr instead of the syslog in this case. This is mainly useful
for when a developer needs to assist in diagnostics.

5.4.3. HPSS Logs and Alarm & Events Display

One reason for insisting that all HPSS servers and client machines be time-synced is to help the
administrator determine what HPSS errors, as reported in the main HPSS error logging facility,
correspond to problems logged on the client machines. By matching the date and timestamps,
HPSSFS-FUSE errors such as a write -5, the ambiguous "something went wrong" I/O error, can
further be analyzed on the HPSS server side. Such analysis can help determine if the error is
network-related, maybe a sporadic outage between the HPSSFS-FUSE client and HPSS, or maybe a
tape has a permanent error and the user’s HPSSFS-FUSE request simply cannot be fulfilled.

If there doesn’t seem to be any corresponding information in the HPSS logs, it may be advantageous
to repeat the user request on another HPSSFS-FUSE client, or even use another HPSS interface such
as PFTP to help isolate what part of the overall system is not working correctly or performing
poorly.

5.4.4. Core Dumps

Core dumps should be enabled in case HPSSFS-FUSE happens to crash. If this occurs, please send
the core dump to your support representative.

If using abrtd(8), it may be useful to adjust abrt.conf(5) and abrt-action-save-package-data.conf(5)
in order for it to generate a full crash report. Restart the abrtd(8) service if you update these
configuration files.

abrt.conf

* MaxCrashReportsSize — may need to increase or set to unlimited.

abrt-action-save-package-data.conf

* OpenGPGCheck = no —if you have installed an unsigned HPSSFS-FUSE package.
* ProcessUnpackaged = yes—if you have installed HPSSFS-FUSE from source.

5.4.5. Force Unmount

Due to exceptional circumstances, it may be necessary to perform a force unmount to unmount an
HPSSFS-FUSE mount point. This can be achieved with the -fflag in the umount(8) command:

$ umount -f /mnt/hpss

In rare situations, this may be insufficient. It may be necessary to issue an abort through FUSE’s
debugfs interface.

$ grep "/mnt/hpss" /proc/self/mountinfo | cut -d" ' -f3 | cut -d':"' -f2
47

21

$ echo 1 > /sys/fs/fuse/connections/47/abort
$ umount /mnt/hpss

5.5. Special Notes

5.5.1. updatedb(8)

updatedb(8) creates or updates a database used by locate(1). updatedb(8) is usually run daily by
cron(8) to update the default database. On HPSSFS-FUSE mounts, this can be a very demanding
operation due to the sheer number of files and directories in the HPSS namespace.

You may want to disable HPSSFS-FUSE mounts from being scanned by updatedb(8) by editing
updatedb.conf(5). Adding fuse.hpssfs to the PRUNEFS list will disable all HPSSFS-FUSE mounts from
being scanned. Alternatively, you can specify paths or subpaths of HPSSFS-FUSE mounts in
PRUNEPATHS to exclude sets of files and directories which may be very large.

5.5.2. Mounting over SSH

If mounting HPSSFS-FUSE on a remote machine using SSH, it is important to note that you will need
to either redirect all output from HPSSFS-FUSE to NULL, or use the "-t" parameter to SSH. If neither
of these are done, the SSH command will stay open until the HPSSFS-FUSE mount point is
unmounted.

[1] Be extra careful with this command, especially if running as root!

22

Chapter 6. Unprivileged Mounts

FUSE allows unprivileged mounts. This means mounts performed by unprivileged users. It achieves
this by having a helper set-uid program fusermount(1) perform mounts for FUSE filesystems. On
some systems, the default permissions only allow users in the group fuse to execute this program.
This is recommended to isolate unprivileged mounts to trusted users only.

Although this allows unprivileged users to mount HPSSFS-FUSE, they must still provide valid HPSS
credentials for the mount to succeed. Only a principal which has the Core Server Control ACL (such
as hpssfs) can perform operations on behalf of other users, so unprivileged mounts should be
limited to principals which do not have the Core Server Control ACL. It is recommended not to use
the allow_other mount option on unprivileged mounts because without the Core Server Control
ACL, all operations will be performed on behalf of the principal used for the mount. Furthermore, it
is recommended that unprivileged mounts perform the mount as the user which is supplied as the
principal, otherwise FUSE may prevent access to your files due to the uid mismatch.

SAN3P

A SAN3P transfers may not work with unprivileged mounts since they require read-
write access to the SAN devices.

Checksum

A The checksum feature may not work with unprivileged mounts since it requires
read-write access to HPSS’s root directory and to the files being opened.

23

Chapter 7. Uses

The HPSSFS-FUSE interface provides users with the ability to use commonly available file transport
mechanisms. This simplifies the use of HPSS by allowing users to access HPSS via interfaces they
are familiar utilizing. This section covers some of these applications, their use, hints at how they
might be configured for use with HPSSFS-FUSE, describes any known limitations or changes
required, and recommendations or lessons learned from field experience.

7.1. General

7.1.1. Overview

If you have not read Concepts, you need to review it and have a good understanding about the
differences between a filesystem (i.e. LFS, GPFS, etc) and an HSM (HPSS). It must be stressed that
HPSSFS-FUSE looks like a filesystem, but it is an interface to HPSS, which is an HSM. Those
differences can have a significant impact to applications that expect 100% compatibility with a true
filesystem. Users who run large programs successfully on a shared filesystem like GPFS, may run
into issues with their application when files are not immediately available (e.g. must be staged from
tape) or where too many simultaneous open files, small block, or random I/O operations are
occurring. HPSSFS-FUSE is a convenience for accessing HPSS, but it will not hide the realities of the
storage system behind it.

7.1.2. Applications

The HPSS team supports the HPSSFS-FUSE interface and will assist administrators (based on the
contract or SOW that exists with a site) with its use. However, HPSS does not provide support for
applications that reside on top of HPSSFS-FUSE. Several applications are mentioned in this section
including the popular SAMBA interface that provides file sharing across a number of different
operating systems. Many sites have been able to successfully use SAMBA and other tools with
HPSSFS-FUSE. Even so, the HPSS team itself does not provide support for installing, configuring, or
maintaining 3rd party applications. Before sites use these applications, they must be prepared to
support themselves or obtain support from other sources. If there are problems using one of the
applications, and it can be shown that the underlying problem is because HPSSFS-FUSE is
mishandling an operation, HPSS support will submit a bug report to development and look for ways
to address the issue. It is imperative that the administrator provide as much detail as possible when
reporting a problem and have performed due-diligence in ensuring the problem is not with the
application or how the end user is using the application.

7.1.3. End-User Access to HPSSFS-FUSE

If there are to be end users directly accessing HPSSFS-FUSE who are not necessarily aware of HPSS
and its HSM characteristics, it is suggested that certain UNIX commands that recursively perform
name-space operations on files be aliased with scripts or programs to test what filesystems they are
accessing. In the case of grep(1) or fgrep(1), a warning or limitation should be in place to ensure
that users don’t accidentally search for a string in files and induce a large number of file stages
from tape as the command recursively navigates the directory tree. It is likely impossible to prevent
all such possible accidents by users, and certainly in no way will prevent intentional misuse of the

24

system, but such precautions will quickly pay for the extra up-front effort by redirecting common
filesystem commands that aren’t necessarily "HSM friendly".

cp(1) and mv(1) Commands

The cp(1) and mv(1) commands from coreutils, by default, attempt to optimize I/O by skipping parts
of a file that are heuristically determined to be sparse, i.e. contain large sequences of zeros. If a
sparse section of a file is encountered while reading, the corresponding part of the destination file
is skipped (using 1lseek(2)), and writing is resumed where the chunk of zeros ends. This has the
potential to significantly reduce the amount of writing performed.

In the case that the destination file is in HPSSFS-FUSE, sparse files tend to produce issues. When
writing to a file, skipping over a section (using lseek(2)) and then writing causes a new Bitfile
segment to be created (it would otherwise extend the current Bitfile segment). If this is done
frequently, you may eventually run into an HPSS limit on the number of Bitfile segments. If this
happens, then no additional Bitfile segments may be created. Therefore, it is recommended that
when using the cp(1) command, you use the --sparse=never option, which switches off the
optimization described earlier. This causes cp(1) to actually write the sparse sections to the
destination file, effectively writing the entire file in a single Bitfile segment. However, the mv(1)
command has no equivalent option, so it is recommended to cp --sparse=never into HPSSFS-FUSE
and unlink the source file instead of trying to use mv(1).

7.2. SAMBA

SAMBA is a suite of UNIX applications that speak the SMB/CIFS protocol. Microsoft Windows®
operating systems and the OS/2® operating system use SMB to perform client-server networking
for file and printer sharing and associated operations. By supporting this protocol, SAMBA enables
computers running UNIX to get in on the action, communicating with the same networking protocol
as Microsoft Windows and appearing as another Windows system on the network from the
perspective of a Windows client. A SAMBA server offers the following services:

» Share one or more directory trees

» Share one of more Distributed File System (DFS) trees

« Share printers installed on the server among Windows clients on the network

 Assist clients with network browsing

* Authenticate clients logging onto a Windows domain

* Provide or assist with Windows Internet Name Service (WINS) name-server resolution

The SAMBA suite also includes client tools that allow users on a UNIX system to access folders and
printers that Windows systems and SAMBA servers offer on the network.

7.2.1. Configuration and Code Modification Suggestions

One site added a patch which disables the feature where Windows can set a "sticky" file
modification time. This causes the file modification time to be updated after every received block
(4KB-64KB depending), which is a round trip to the metadata server. If the HPSSFS-FUSE Gateway
machine is not local, but attached to HPSS via a WAN, this type of change is important to maintain

25

high transaction performance.

This is a change that sites would like to see in the SAMBA baseline, but as it stands today, such a
change which would benefit other non-local filesystems (e.g. NFS) has not been adopted by the
keepers of the SAMBA code. Local modifications to the SAMBA code are required.

Sites may want to make a modification to SAMBA to check for and delete a file before creating it
using an open for write with truncate. This allows a site to perform a Class of Service (COS) change
on an existing file. Otherwise, specifying a different COS (either by an explicit ioctl call or using an
alternate HPSSFS-FUSE mount) is ignored.

7.3. NES

7.3.1. Overview

Network File System (NFS) is an RPC protocol used to share files and directories across a network.
NFSv3 is not supported by HPFSSFS-FUSE.

7.3.2. Configuration Suggestions

At present, few HPSS sites are currently using NFS over HPSSFS-FUSE in production. Based on past
experimentation, however, we recommend the following:

* The nfs4 mount option should be included for HPSSFS-FUSE mounts exported for use by NFSv4
clients. Using the NFS mount option with non-NFS clients is not supported and can cause
unexpected behavior.

 Since NFS is incompatible with junctions, the nfs4 mount option disables junctions. It is possible
to mount fileset roots directly, avoiding the need for junctions. Secondary mount points may be
overlaid on an existing mount to provide a contiguous namespace that resembles the HPSS
namespace.

* A large number of nfsd(8) processes has not been shown to improve NFS performance with
HPSSFS-FUSE. It is recommended that the administrator starts with no more than 4 or 8 nfsd(8)
processes and adjust upwards only after conferring with HPSS support.

7.4. Secure FTP

SFTP is the SSH® File Transfer Protocol (sometime referred to as the Secure File Transfer Protocol).
Some sites use SFTP clients to access the HPSS namespace via the HPSSFS-FUSE interface of HPSS.
This allows for a secure, encrypted access from client machines that are not supported via the
Client API or just as a more general interface for users that do not want to run the HPSS Client APIL.

7.4.1. Configuration and Code Modification Suggestions

Sites may want to consider making a small patch to the SFTP code to delete a file before creating it
using an open for write with truncate. This allows a different Class of Service (COS) to be used if the
same file is rewritten. This was done in the sftp-server(8) and scp(1) Linux code at one of the HPSS
sites.

26

7.5. Apache

7.5.1. Overview

The Apache HTTP Server Project is an effort to develop and maintain an open-source HTTP server
for modern operating systems including UNIX and Windows operating systems. The goal of this
project is to provide a secure, efficient, and extensible server that provides HTTP services in sync
with the current HTTP standards. Some sites use the HTTP server to run a CGI program to give their
users an interface to upload and download files from their HPSSFS-FUSE system.

7.5.2. Configuration Suggestions

Some sites use a CGI program to provide their users with the ability to upload and download files
though a web interface. There were no code or configuration changes made to HPSSFS-FUSE in
order to get this to work. It was suggested that the following line in httpd.conf be uncommented:

e f#{EnableSendfile off

7.5.3. Recommendations

Apache on top of HPSSFS-FUSE works well for deep archive-type access where infrequently used
data can be back-stored in HPSS. For frequently accessed data, or frequently updated information
as found on most web-services (e.g. news or sales-oriented site), HPSSFS-FUSE is probably not a
good fit unless there is substantial HPSS disk cache and files rarely need to be staged back from
tape.

27

Chapter 8. Mount Options

HPSSFS-FUSE has a multitude of options to configure mount points.

8.1. Credentials

These are mount options related to setting up HPSS credentials.

Option Description Example Default
auth Primary authenticator. auth=auth_keytab:/var/hpss $HPSS_PRIMARY_AUTHENTICATO
/etc/hpss.unix.keytab R
authmech Authentication authmech=unix $HPSS_PRIMARY_AUTHN_MECH
mechanism.
authtype Authentication type. authtype=auth_keytab Derived from auth value
princ Principal name. princ=hpssfs $HPSS_PRINCIPAL_FS

8.2. HPSS Options

These are the mount options related to HPSS.

Option Description Example Default

cos COS ID on newly created cos=1 0 (HPSS default COS)
file.

family Family ID on newly created family=1 0 (None)
files.

maxfsz Maximum offset to allow maxfsz=1024 0 (unlimited)

writing in MB.

var HPSS var path var=/var/hpss_test $HPSS_PATH_VAR
[nolmaxseg Use the maximum COS maxsegsz nomaxsegsz
y/ storage segment size when

creating a new file.

[nolacl Enable POSIX Access acl noacl
Control Lists extended
attributes.
[no]purgeo Files created with the purgeonmigr nopurgeonmigr
nmigr purge on migrate flag. See
Purge on Migrate for more
information. "
[nolsan ™ Enable SAN3P. san Derived from
$HPSS_API_SAN3P
[no]shm Enable shared memory shm noshm
transfers.

28

Option

[no]stage

[no]stageta
pe

[no]stickyta
pe

eremote_cal
lout

Description

Enable staging files on
open.

Allow mount point to open
files that are only available
on tape. ™’

Report the sticky bit as set
for files only available on
tape (e.g. files which would
be impacted by the
stagetape option).
Directories are not
impacted. "

Callout/hook for when an
EREMOTE occurs with
nostagetape. Defines a
valid executable.

8.3. Checksum Options

Example

nostage

nostagetape

nostickytape

Default

stage

stagetape

stickytape

eremote_callout=/home/user None

A/hpssfs/post-process.py

These are the mount options related to checksum.

Option

cksum

Description
Algorithm to use for

checksum processing.

Valid options (case-
insensitive):
* none
* adler32
e crc32
e md5
* shal
 sha224
* sha256
* sha384
* sha512

Example

cksum=md5

Default

none (no checksum
processing)

29

Option

nch

rvl

ckstyle ™

Description

What to do when a non-
checksummed file is
opened.

» f—Fail to open

* g—Generate a new
checksum

* i—Do not perform
checksum processing

Seconds for how long a file
is valid since it was
successfully verified.

Where to store checksum
attributes.

e filehash— Store in File
Hash metadata

e yda —Store in UDA
metadata

* hybrid —Store in both
File Hash and UDA
metadata

Example

nch=g

rvl=3600

ckstyle=filehash

[no]lcksuma Allow checksum readbacks nocksumatime

time

to update atime.

8.4. Other HPSSFS-FUSE Options

Option

attrtimeo

entrytimeo

stagetimeo

udatimeo

trace

30

Description

Seconds to keep cached file
attributes.

Seconds to keep cached
entry names.

Seconds to wait for stage
completion.

Seconds to wait for UDA
lock (minimum allowed
value 25).

Level of detail for logging.

Example

attrtimeo=60

entrytimeo=30

stagetimeo=3600

udatimeo=25

trace=1

Default
.F

hybrid

cksumatime

Default
60

30

3600

25

Option
ip

ctrlpath

stream

nostream

maxfsz

autopurgelo
ck

Description

Specifiy the interface over
which HPSSFS-FUSE will
communicate with the
Mover(s). Value provided
can be a hostname, IP
address, or network
interface. This option may
be supplied up to 32 times
for striped I/0. Value(s)
specified must be
resolvable on the local
host.

Specify the interface over
which HPSSFS-FUSE will
communicate with the
Core Server for stage
operations. Value provided
can be a hostname, IP
address, or network
interface. Value specified
must be resolvable on the
local host.

Buffer size for
readahead/writeback in
megabytes.

Use unbuffered I/0
(equivalent to stream=0).

Maximum offset to allow
writing in megabytes.

Maximum file size in bytes
to auto-purge-lock. See
Auto Purge Lock for more
information.

Example

ip=eth@

ctrilpath=eth@

stream=8

nostream

maxfsz=1024

autopurgelock=1048576

Default

HPSS_API_HOSTNAME (if not
set, local hostname)

local hostname

Not used

0 (unlimited)

0 (disabled)

31

Option

idmap

uidfile
gidfile

[noldio

[no]nfs4

A

Description
Enable ID mapping.
Valid options (case-
insensitive):
* none
* user
* file

See ID Mapping for more
information.

UID mapping file;
used with idmap-=file

only

See ID Mapping for more
information.

GID mapping file;
used with idmap-=file

only

See ID Mapping for more
information.

Whether to allow files to
be opened with 0_DIRECT.

Whether to turn on
optimizations for NFSv4.
See NES for more
information.

ip Option

Example

idmap=user

uidfile=/var/hpss/etc/uid.

map

gidfile=/var/hpss/etc/qid.

map

dio

nfs4

Default
none (disabled)

Not used

Not used

nodio

nonfs4

Avoid using loopback addresses for the ip mount option. HPSSFS-FUSE will use this
address for stage callbacks and for Mover connections. If a Core Server or Mover
cannot connect to the address provided, stage callbacks and Mover I/O will fail.

8.5. FUSE Options

These are options that are passed through to the FUSE filesystem. See mount.fuse(8) for more

information.

32

Description

Enable FUSE debugging. Implies -f.

Run in foreground.

Make FUSE requests single-threaded.

Option Description

allow other
1

Allow other users to access the mount point. This option is recommended for
privileged mounts which use the hpssfs principal.

allow root” Allow root user to access the mount point.

auto_unmount Automatically unmount if FUSE server process dies.

[8]

debug

readdirplus
B

Enable FUSE debugging. Same as -d.
Enable readdirplus.

max_backgro Maximum number of background threads to handle readahead and async I/O

und ™"

threads. The default value is 100.

congestion_th Number of threads required to be busy before the filesystem becomes congested.

reshold ™"

The default value is 75% of the max_background value.

8.6. Kernel Options

These are options available to any mount point. See mount(8) for more information.

Option Description

ro Mount as read-only.

rw Mount as read-write.

[no]atime Whether to update inode access times.

[no]dev "* Whether to allow access to special devices. HPSS does not support special devices,
so this option has no effect.

[no]lexec ™ Whether to allow programs to be executed.

[nolsuid Whether to honor the set-uid bit on programs.

[alsync Whether to perform synchronous I/0.

dirsync Complete all directory updates synchronously.

context Default SELinux labels "”.

defcontext

fscontext

rootcontext

atime Option

Because of the way HPSS funcitons, the atime option only applies to cached data. If
the data being read is retrieved from HPSS, the Core Server automatically updates
TimeLastRead and thus noatime would have no effect.

33

dev and suid Options

The dev and suid options are controlled by the FUSE library. They are mounted
nodev and nosuid by default and can only be overridden by a privileged user.

Multiple ip Options

Multiple instances of the ip mount options can be used to enable the use of
multiple network connections for data transfers, even with non-striped volumes.
- For example, using the ip options four times (with the same, or different IP
addresses) will results in four network connections being used for each data
transfer. This can increase read and write throughput for devices supporting
higher bandwidth I/O. Additionally, this behavior is only supported for non-mover
protocol transfer. So disabling shared memory (via noshm mount option) and
SAN3P (via nosan mount option) transfers is required.

[1] The purgeonmigr mount option is only valid on HPSS 10.2 or newer.
[2] SAN3P transfers are only available for privileged mounts.
[3] stagetape mount option only valid on HPSS 8.1 or newer.
[4] stickytape mount option only valid on HPSS 11.3 or newer.
[5] Requires HPSS File Hash (E2EDI) feature.

[6] These options are only useful for diagnostic purposes.

[7] Availability of this option is controlled by /etc/fuse.conf.
[8] Requires fusermount >= 2.9.

[9] Requires libfuse >= 3.0 and Linux kernel >= 3.9.

[10] Requires fusermount >= 2.9.

[11] Requires fusermount >= 2.9.

[12] Can only be overridden by a privileged user.

[13] Requires libfuse >= 2.9.7.

34

Chapter 9. Extensions

HPSSFS-FUSE supports a number of extensions to the POSIX library interface to enable users to
control specific HPSS attributes, such as setting the Class of Service (COS) value. It also supports
additional operations that occur on the opening and closing of files.

9.1. ioct1(2) Interface

Command Description Example
HPSSFS_GET_COS Get COS getcos.c getcos.py
HPSSFS_SET_COS_HINT Set COS hints by COS ID setcoshint.c setcoshint.py
HPSSFS_SET_FSIZE_HINT Set COS hints by file size setfsizehint.c setfsizehint.py
HPSSFS_SET_MAXSEGSZ_HINT Set HINTS_FORCE_MAX_SSEG setmaxsegszhint.c
COS hints flag setmaxsegszhint.py
HPSSFS_PURGE_CACHE Purge file data from the kernel purge_cache.c purge_cache.py
cache
HPSSFS_PURGE_LOCK Purge lock or unlock a file purge_lock.c purge_lock.py
HPSSFS_UNDELETE ™ Undelete a file or directory ™ undelete.c undelete.py

35

9.1.1. Examples

getcos.c

/* getcos.c */

#include <fentl.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argv[]) {
int fd, rc;
const char *filename;
uint32_ t cos;

if(arge !=2) {
fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
return EXIT_FAILURE;

}

filename = argv[1];

/* use O_NONBLOCK to prevent staging */
fd = open(filename, O_RDONLY|O_NONBLOCK);
if(fd < 0) {

perror("open");

return EXIT _FAILURE;
}

/* get the COS ID */
rc = ioctl(fd, HPSSFS_GET COS, &cos);
if(re 1= 0) {
perror("ioctl");
close(fd);
return EXIT_FAILURE;
}

close(fd);

printf("COS is %" PRIu32 "\n", cos);
return EXIT_SUCCESS;

36

getcos.py

#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

if __name__ == "'__main__'
if len(argv) != 2:
print('Usage: %s <filename>' % (arqv[0]))
exit(1)

with os.fdopen(os.open(argv[1], 0s.0_RDONLY | os.0_NONBLOCK)) as f:
print('COS is %d' % ioctl(f.fileno(), HPSSFS_GET_C0S))

37

setcoshint.c

38

/* setcoshint.c */

#include
#include
#include
#include
#include
#include
#include

<errno.h>
<fentl.h>
<stdio.h>
<stdlib.h>
<sys/ioctl.h>
<unistd.h>
<linux/hpssfs.h>

int main(int argc, char *argv[]) {

int

rc, fd;

const char *filename, *cosstr;
unsigned long val;

uint32_

t coS;

if(arge != 3) {

fprintf(stderr, "Usage:

%s <filename> <cos-id>\n", argv[0]);

return EXIT_FAILURE;

}
filename = argv[1];
cosstr = argv[2];

/* convert COS string to value */
errno = 0;
val = strtoul(cosstr, NULL, 0@);

if(val

> UINT32_MAX || errno != @) {

fprintf(stderr, "Invalid COS ID '%s'\n", cosstr);
return EXIT_FAILURE;

}

Ccos =

/* use

val;

O_NONBLOCK to prevent staging

* create file if it doesn't exist

*/

fd = open(filename, O_RDWR|O_CREAT|O_NONBLOCK, 0644);
if(fd < 0) {

perror("open");

return EXIT_FAILURE;

}

/* set

the COS ID hint

* this will only work if the file has no data

*/

rc = joctl(fd, HPSSFS_SET_COS_HINT, &cos);
if(re 1= 0) {

perror("ioctl");

close(fd);

return EXIT_FAILURE;

}

}
close(fd);

return EXIT_SUCCESS;

39

setcoshint.py

#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

if __name__ == "'__main__'
if len(argv) != 3:
print('Usage: %s <filename> <cos-id>" % (argv[0]))
exit(1)

with os.fdopen(os.open(argv[1], os.0_RDWR | o0s.0_CREAT | os.0_NONBLOCK, Q0644)) as
f:

ioctl(f.fileno(), HPSSFS_SET_COS_HINT, int(argv[2]))

40

setfsizehint.c

/* setfsizehint.c */
#include <errno.h>
#include <fentl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argv[]) {

int rc, fd;

const char *filename, *size;
unsigned long long val;

uintb4_t filesize;

if(arge != 3) {
fprintf(stderr, "Usage: %s <filename> <size>\n", arqv[0]);
return EXIT_FAILURE;

}
filename = argv[1];
size = argv[2];

/* convert size string to value */

errno = 0;

val = strtoull(size, NULL, 0);

if(val > UINT64_MAX || errno != @) {
fprintf(stderr, "Invalide size '%s'\n", size);
return EXIT_FAILURE;

}

filesize = val;

/* use O_NONBLOCK to prevent staging
* create file if it doesn't exist
*/
fd = open(filename, O_RDWR|O_CREAT|O_NONBLOCK, 0644);
if(fd < 0) {
perror("open");
return EXIT_FAILURE;
}

/* set the file size hint
* this will only work if the file has no data
*/
rc = ioctl(fd, HPSSFS_SET_FSIZE_HINT, &filesize);
if(re 1= 0) {

perror("ioctl");

close(fd);

return EXIT_FAILURE;

42

}

}
close(fd);

return EXIT_SUCCESS;

setfsizehint.py

#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

if __name__ == "'__main__'
if len(argv) != 3:
print('Usage: %s <filename> <size>' % (arqv[0]))
exit(1)

with os.fdopen(os.open(argv[1], os.0_RDWR | o0s.0_CREAT | os.0_NONBLOCK, Q0644)) as
f:

ioctl(f.fileno(), HPSSFS_SET_FSIZE_HINT, int(argv[2]))

43

setmaxsegszhint.c

/* setmaxsegszhint.c */
#include <errno.h>
#include <fentl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argv[]) {
int rc, fd;
const char *filename, *cosstr;
unsigned long val;
uint32_t cos;

if(arge !'= 2 && arge != 3) {
fprintf(stderr, "Usage: %s <filename> [<cos-id>]\n", arqv[0]);
return EXIT_FAILURE;

}
filename = argv[1];
cosstr = argv[2];

if(cosstr != NULL) {
/* convert COS string to value */
errno = 0;
val = strtoul(cosstr, NULL, 0@);
if(val > UINT32_MAX || errno != 0) {
fprintf(stderr, "Invalid COS ID '%s'\n", cosstr);
return EXIT_FAILURE;

}
/* set this COS ID along with maxsegsz hint */
cos = val;
}
else
/* @ means only apply the maxsegsz hint */
cos = 0;

/* use 0_NONBLOCK to prevent staging
* create file if it doesn't exist
*/
fd = open(filename, O_RDWR|O_CREAT|O_NONBLOCK, 0644);
if(fd < 0) {
perror("open");
return EXIT_FAILURE;
}

/* set the maxsegsz hint

44

* this will only work if the file has no data
*/
rc = ioctl(fd, HPSSFS_SET _MAXSEGSZ HINT, &cos);
if(re 1= 0) {

perror("ioctl");

close(fd);

return EXIT_FAILURE;

}
close(fd);

return EXIT_SUCCESS;

45

setmaxsegszhint.py

#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

if __name__ == "'__main__'
if len(argv) != 2 and len(argv) != 3:
print('Usage: %s <filename> [<cos-id>]" % (arqv[0]))
exit(1)

if len(argv) == 2:
argv.append('0")

with os.fdopen(os.open(argv[1], os.0_RDWR | os.0_CREAT | os.0_NONBLOCK, @0644)) as
f:

ioctl(f.fileno(), HPSSFS_SET_MAXSEGSZ_HINT, int(argv[2]))

46

purge_cache.c

/* purge_cache.c */
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int arge, char *argv[]) {
int fd, rc, failed = 0;
const char *filename;

if(arge < 2) {
fprintf(stderr, "Usage: %s <filename> [<filename> ...]J\n", arqv[0]);
return EXIT_FAILURE;

}

while((filename = *++argv) != NULL) {
/* use 0_NONBLOCK to prevent staging */
fd = open(filename, O_RDONLY|O_NONBLOCK);
if(fd < 0) {
fprintf(stderr, "open(%s): %s\n", filename, strerror(errno));
failed = 1;
¥

/* purge data from kernel cache */
rc = ioctl(fd, HPSSFS_PURGE_CACHE);
if(re 1= 0) {
fprintf(stderr, "ioct1(%s, HPSSFS_PURGE_CACHE): %s\n", filename,
strerror(errno));
close(fd);
failed = 1;
}
else
fprintf(stdout, "purged %s\n", filename);

close(fd);
}

if(failed)
return EXIT _FAILURE;

return EXIT_SUCCESS;
}

47

purge_cache.py

#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

Python 3 doesn't have 'xrange'; its 'range' is equivalent
try:

Xrange
except NameError:

Xrange = range

if __name__ == '__main__'
if len(argv) < 2:
print('Usage: %s <filename> [<filename> ...]" % (argv[0]))
exit(1)

ret = 0
for i in xrange(len(argv)-1):
try:
with os.fdopen(os.open(argv[i+1], 0s.0_RDONLY | os.0_NONBLOCK)) as f:
joctl(f.fileno(), HPSSFS_PURGE_CACHE)
print('purged %s' % argv[i+1])
except Exception as e:
print(e)
ret =1
exit(ret)

48

purge_lock.c

/* purge_lock.c */
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argv[]) {
int rc, fd;
const char *filename, *cmd;
uint32_t lock;

if(arge != 3) {
fprintf(stderr, "Usage: %s <filename> <lock|unlock>\n", argv[0]);
return EXIT_FAILURE;

}
filename = argv[1];
cmd = arqv[2];

if(strcasecmp(emd, "lock") == 0)

lock = 1;

else if(strcasecmp(emd, "unlock") == 0)
lock = 0;

else {

fprintf(stderr, "Usage: %s <filename> <lock|unlock>\n", argv[0]);
return EXIT_FAILURE;

}

/* use O0_NONBLOCK to prevent staging */
fd = open(filename, O_RDONLY|O_NONBLOCK);
if(fd < 0) {

perror("open");

return EXIT _FAILURE;
}

/* set purge lock/unlock */
rc = joctl(fd, HPSSFS_PURGE_LOCK, &lock);
if(re 1= 0) {
perror("ioctl");
close(fd);
return EXIT_FAILURE;
}

close(fd);

return EXIT_SUCCESS;

purge_lock.py

#!/usr/bin/env python

import os
from sys import argv, exit
from hpssfs import *

if __name__ == "'__main__'
if len(argv) != 3:
print('Usage: %s <filename> <lock|unlock>' % (argv[@]))
exit(1)

if argv[2].lower() == 'lock"':
lock = 1
elif argv[2].lower() == 'unlock':
lock = 0
else:
print('Usage: %s <filename> <lock|unlock>' % (argv[@]))
exit(1)

with os.fdopen(os.open(argv[1], os.0_RDONLY | os.0_NONBLOCK)) as f:
joct1l(f.fileno(), HPSSFS_PURGE_LOCK, lock)

31

undelete.c

32

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

nclude <errno.h>
nclude <fcntl.h>
nclude <getopt.h>
nclude <inttypes.h>
nclude <stdint.h>
nclude <stdio.h>
nclude <stdlib.h>
nclude <string.h>
nclude <sys/ioctl.h>
nclude <unistd.h>
nclude <Llinux/hpssfs.h>

/* options */
static const struct option long_options[] =

{

+

{ "help", no_argument, NULL, 'h', }
{ "overwrite", no_argument, NULL, 'o', }
{ "restore-time", no_argument, NULL, 'r", },
{ "verbose", no_arqgument, NULL, 'v', }
{ NULL, 0, NULL, 0, }

/* print usage */
static void usage(const char *prog)

{

}

fprintf(stderr, "Usage: %s [OPTION]... FILE...\n"
"o
"\t-h, --help \tShow this message\n"
"\t-o, --overwrite \tOverwrite an existing file\n"
"\t-r, --restore-time \tRestore timestamps\n"
"\t-v, --verbose \tPrint files which have been undeleted\n"
"o
"See HPSS documentation for more information about undelete.\n",

prog);

int main(int argc, char *argv[])

{

int fd, rc, ¢, verbose = 0;

int ret_code = EXIT SUCCESS;

const char *filename;

uint32_t options = HPSSFS_UNDELETE_NONE;

/* parse the options */
while((c = getopt_long(argc, argv, "horv", long_options, NULL)) != -1)
{

switch(c)

{
/* -h or --help */

case 'h':
usage(argv[0]);
return EXIT_SUCCESS;

/* -0 or --overwrite */
case 'o':
if(options == HPSSFS_UNDELETE_NONE)
options = HPSSFS_UNDELETE_OVERWRITE;
else if(options == HPSSFS_UNDELETE_RESTORE_TIME)
options = HPSSFS_UNDELETE_OVERWRITE_AND_RESTORE;
break;

/* -r or --restore-time */
case 'r':
if(options == HPSSFS_UNDELETE_NONE)
options = HPSSFS_UNDELETE_RESTORE_TIME;
else if(options == HPSSFS_UNDELETE_OVERWRITE)
options = HPSSFS_UNDELETE_OVERWRITE_AND_RESTORE;

break;

/* -v or --verbose */
case 'v':

verbose = 1;

break;

/* invalid option */
default:
usage(argv[0]);
return EXIT_FAILURE;
}
}

/* check that there is at least one non-option */
if(argv[optind] == NULL)
{
usage(arqv[0]);
return EXIT_FAILURE;
}

/* undelete each non-option */
while((filename = argv[optind++]) != NULL)
{
/* use O0_NONBLOCK to prevent staging */
fd = open(filename, O_RDONLY|O_NONBLOCK);
if(fd < 0)
{

fprintf(stderr, "%s: open: %s\n", filename, strerror(errno));

ret code = EXIT FAILURE;
continue;

}

33

}

54

/* undelete the file */
rc = ioctl(fd, HPSSFS_UNDELETE, &options);
if(rc !'=0)
{
fprintf(stderr, "%s: ioctl: %s\n", filename, strerror(errno));
close(fd);
ret _code = EXIT FAILURE;
continue;

}

/* print undeleted file if verbose */
if(verbose)
printf("Undeleted %s\n", filename);

close(fd);
}

/* all files were undeleted successfully */
return ret_code;

undelete.py

#!/usr/bin/env python

import os

from argparse import ArgumentParser
from sys import argv, exit

from hpssfs import *

Python 3 doesn't have 'xrange'; its 'range' is equivalent
try:

Xrange
except NameError:

Xrange = range

if __name__ == ' main__"':
parser = ArgumentParser()
parser.add_argument('-o', '--overwrite', action="store_true', help='Overwrite an

existing file')
parser.add_argument('-r', '--restore-time', action="store_true', help="Restore
timestamps')

parser.add_argument('-v', '--verbose', action="store_true', help='Print files
which have been undeleted')

parser.add_argument('filename’, nargs='+"', help="File to
undelete')

args = vars(parser.parse_args())

if args['overwrite'] and args['restore_time']:
val = HPSSFS_UNDELETE_OVERWRITE_AND_RESTORE
elif args['overwrite']:
val = HPSSFS_UNDELETE_OVERWRITE
elif args['restore_time']:
val = HPSSFS_UNDELETE_RESTORE_TIME
else:
val = HPSSFS_UNDELETE_NONE

ret = 0
argv = args['filename']
for 1 in xrange(len(argv)):
try:
with os.fdopen(os.open(argv[i], 0s.0_RDONLY | os.0_NONBLOCK)) as f:
joctl(f.fileno(), HPSSFS_UNDELETE, val)
if args['verbose']:
print('Undeleted %s' % argv[i])
except Exception as e:
print(e)
ret =1

exit(ret)

55

9.2. fallocate(2)
HPSSFS-FUSE supports the fallocate(2) system call ™.

The fallocate(2) system call allows the user to perform two operations.

9.2.1. Preallocate

This operation allows the user to preallocate disk space on a disk Storage Class at the top of the file’s
COS Hierarchy. If this operation succeeds, a write to the file up to the preallocated size cannot fail
due to insufficient space.

9.2.2. Punch Hole

This operation allows the user to punch a hole in a file. Essentially in HPSS, this means removing
the specified portion of Bitfile segments, which consequently makes that portion of the file filled
with zeros. As a side effect, some storage segments may also be freed.

9.3. Linux Extended Attributes

HPSSFS-FUSE supports Linux Extended Attributes (xattrs). These are manipulated using the
getxattr(2), setxattr(2), listxattr(2), and removexattr(2) system calls; the attr_get(3),
attr_set(3), attr_multi(3), and attr_remove(3) library calls; and the getfattr(1), setfattr(1), and
attr(1) commands. See attr(5) for more information.

9.3.1. Features and Limitations

Improvements Over HPSSFS-VFS

» HPSSFS-FUSE supports xattrs with binary values. Previously, xattr values were limited to text-
only.

» HPSSFS-FUSE supports xattrs with values up to 64KB (enforced by the kernel). Previously, xattr
values were limited to under 1KB.

Limitations

WARNING

Linux extended attributes will not be retrievable without the following
Q environment variables (/var/hpss/etc/env.conf) set on the Core Server:

* HPSS_API_XMLSIZE_LIMIT=131072 (or greater)

* HPSS_API_XMLREQUEST_LIMIT=131072 (or greater)

WARNING

A SELinux labels are not supported at this time due to limitations with the FUSE
kernel module.

36

9.3.2. system Namespace

HPSSFS-FUSE supports arbitrary xattrs in the system namespace. However, the
system.posix_acl_access and system.posix_acl _default xattrs are only available when using the acl

mount option. Additionally, the system.hpssfs namespace is reserved for HPSSFS-FUSE runtime
information, and the system.hpss namespace is reserved for HPSS attributes.

Name Description Access
system.hpssfs.trace View or set the current trace level for Read/Write
the mount point. Mount directory only
system.hpssfs.info View mount point information. More ~ Read
information Mount directory only
system.hpssfs.opens View list of open files on mount point. Read
More information Mount directory only
system.hpssfs.apilog.level HPSS Client API log level Read/Write
Mount directory only
system.hpssfs.apilog.path HPSS Client API log path Read/Write
Mount directory only
system.hpss.account HPSS Account ID Read/Write
Files only
system.hpss.bitfile HPSS Bitfile ID Read
Files only
system.hpss.comment HPSS Comment Read/Write
system.hpss.cos HPSS COS ID Read/Write
Files only
system.hpss.family HPSS File Family ID Read/Write
Files only
system.hpss.fileset HPSS Fileset Read
system.hpss.level HPSS Level Data. More information Read
system.hpss.opens HPSS Opens Read
Files only
system.hpss.optimum HPSS Optimum Access Size Read
Files only
system.hpss.path HPSS Path ! Read
system.hpss.purgelock HPSS Purge Lock Status Read/Write
Files only
system.hpss.reads HPSS Reads Read
Files only
system.hpss.realm HPSS Realm ID Read
system.hpss.subsys HPSS Subsys ID Read

57

Name

system.

system.

system.
system.

ﬁystem.

ﬁystem.

system.

[11

system.

[1]

system.

system

.hpss

hpss.

hpss.

hpss.
hpss.
hpss.

hpss.

hpss.

hpss.

hpss.

writes

trash.
trash.

trash.

trash.

trash.

trash.

trash.

.trash.

hls listing tool

parent ™

uid ™

haSh [5 - Mount Options]

timedeleted

timecreated

timelastread

timemodified

path [1]

name ™

Description

HPSS Writes

HPSS File Hash Metadata

HPSS Trash Parent ID
HPSS Trash User ID
HPSS Trash Time Deleted

HPSS Trash Time Created

HPSS Trash Time Last Read

HPSS Trash Time Last Modified

HPSS Trash Path
HPSS Trash Name

Access

Read
Files only

Read/Write
Files only

Read
Read
Read

Read

Read

Read

Read
Read

HPSSFS comes with a simple tool to colorize file output to determine whether a file is on disk or
tape. See the README in the examples/hls directory for information on this tool.

system.hpssfs.info

Recommend to view as:
getfattr -n system.hpssfs.info --only-values <mount point>

Reset counters with:
setfattr -x system.hpssfs.info <mount point>

Example output:

Num
Read ------
net 204800
san3p 845
shm 845
total 206490
cksum 180
Write — ------
net 8192
san3p 32
shm 32
total 8256

API Hostname: fc00::22

38

Errors

[SSEN S I G I S I S

8
8
8
25
15

1

:160

38860800
38860800
38860800
16582400
09949440
33554432
33554432
33554432
00663296

Data Hostnames:
fc00::220:160
iffff:192.168.220.160

This output includes stats for reading and writing. The stats do not count the overhead of the mover
protocol.

The net row only shows up if san3p and/or shm is enabled. It is the amount of data transferred via
PDATA.

The san3p row only shows up if san3p is enabled. It is the amount of data transferred via SAN3P.

The shm row only shows up if shm (shared memory) is enabled. It is the amount of data transferred
via SHM.

The total row is the sum of the net, san3p, and shm rows.

The cksum row only shows up if Checksum is enabled. It is the amount of data that has been
checksummed (including gaps). This amount is not tallied into the total because the data transfers
are already accumulated into the net, san3p, and shm rows.

API Hostname is the address used for communicating with the Core Server, including stage
callback. It defaults to the current hostname (e.g. gethostname()), or can be changed via the ctrilpath
mount option.

Data Hostnames is the list of addresses used for communicating with Movers. There will be one
address per row which corresponds to the set of ip mount options provided. If no ip mount option
was used, the HPSS_API_HOSTNAME is used to communicate with Movers.

system.hpssfs.opens

Recommend to view as:
getfattr -n system.hpssfs.opens --only-values <mount point>

Example output:

File 0: fileset=3272835621.465112592 name=./dd_file_cos1
0bji1d=21318465, fd=0, uid=0, oflags=0x2, count=1

This information includes the Fileset ID, path (relative to Fileset; absolute path may be shown for
HPSS 7.5 and newer), NS Object ID, Client API file descriptor, User ID (of who opened the file), open
flags (0x2 here is 0_RDWR), and reference count.

system.hpss.level

The system.hpss.level extended attribute lists information about where data for a file resides in
HPSS. Here is a grammar for the output:

<level-list> => <level-data>

39

| <level-list>;<level-data>
| <empty>

<level-data> => <level-number>:<medium>:<storage-info>:(<vv-list>)<more>

<medium> => disk
| tape

<storage-info> => nodata
| <bytes-at-level>:<stripe-length>:<stripe-width>:<optimum-access-size>

<vv-list> => <yv-data>
<vv-list><vv-data>

<vv-data> => <bytes-on-vv>:<rel-position>:[<pv-list>]

<pv-list> => <pv-label>
| <pv-list>,<pv-label>

<more> = ...
| <empty>

Example:

0:disk:1024:1048576:1:4194304:(1024:0:[D00001]);1:tape:1024:1048576:1:4194304:(1024:5:
[095243])

This file has data on two levels:

* Level 0: Disk
> 1024: bytes on this level
o 1MB: stripe length
o 1: stripe width
> 4MB: optimum access size
> VV O:
= 1024: bytes on volume

= 0: relative offset

60

= PV List
= D00001
* Level 1: Tape
> 1024: bytes on this level
o 1MB: stripe length

o 1: stripe width

o

4MB: optimum access size
> VV O
= 1024: bytes on volume
= 5:relative offset
= PV List

= 095243

Disk VV Information
Disk VV Information is only available with HPSS >= 7.5.0p1.

9.3.3. trusted Namespace

HPSSFS-FUSE supports arbitrary xattrs in the trusted namespace for super users. These xattrs are
stored in HPSS UDA metadata under the XPath /hpss/fs, e.g. the xattr trusted.name will be located
at the XPath /hpss/fs/trusted.name.

9.3.4. security Namespace

HPSSFS-FUSE supports arbitrary xattrs in the security namespace for all users. However, the
security.selinux, security.ima and security.capability xattrs are currently disabled because FUSE does
not properly support them.

9.3.5. user Namespace

HPSSFS-FUSE supports arbitrary xattrs in the user namespace for all users. Most of these xattrs are
stored in the HPSS UDA metadata under the XPath /hpss/fs, e.g. the xattr user.name will be located
at the XPath /hpss/fs/user.name. The checksum attributes are stored in a separate XPath for
interoperability with other interfaces.

9.4. Checksum

HPSSFS-FUSE Checksum feature is a file-level checksumming mechanism which generates file
checksums when files are created and written. When files are later opened, their contents are
verified against the generated checksum. If the checksum does not match, the file fails to open.

g WARNING
The checksum feature will not work without the following environment variables

61

(/var/hpss/etc/env.conf) set on the Core Server:

o HPSS_API_XMLSIZE_LIMIT=131072 (or greater)
o HPSS_API_XMLREQUEST_LIMIT=131072 (or greater)

These must be set whether using UDA-style, FileHash-style, or Hybrid-style
checksum because the locking mechanism uses UDAs.

9.4.1. Operation

This section will briefly describe the operations of the HPSSFS-FUSE Checksum feature, assuming
the checksum option is enabled.

File Creation and Inline Checksumming

When a file is created, a new hash context is created which uses the algorithm specified by the
cksum mount option. As data is appended to the file, the data is also appended to the hash context,
and the context’s offset is moved forward. If the file offset of an incoming write is past the current
context’s offset, then a zero-filled buffer is appended to the context in order to fill the gap. These
two operations are inline checksumming. Once the file is closed, the context is finalized and the
resulting digest is stored.

If the file offset of an incoming write is before the current context’s offset, then inline
checksumming is disabled. No more checksum processing will be performed until the file is closed.

File Open Readback

When a file is opened, the entire file is read. The file’s contents are checksummed and verified
against the checksum metadata. If the checksums do not match, the file fails to open. The file can
resume inline checksumming with the context’s offset pointed at the end of the file.

File Close Readback

A file may be read back upon close if any of the following conditions are met:

* Inline checksumming was canceled due to writing prior to the context’s offset (otherwise
known as "random I/0").
* Multiple users have opened the file.

In these cases, the file needs to be read back in order to generate its checksum. Once the file has
been processed, its checksum metadata is updated.

Checksum Readback

Readbacks for the purpose of generating new checksum information can happen

! in one of two ways:

1. Generate on open if no checksum information exists and nch=g

2. Generate on close if random I/O or concurrent users is detected

62

In both cases, we must rely on the data which resides in HPSS to generate the
checksum. You should minimize these cases because the checksum will be
generated based on the data read from HPSS. It is possible that the data could have
already been corrupted by the time we read it, resulting in a checksum that
matches the corrupted data. From then on, integrity checks will continue to pass as
long as the generated checksum matches the corrupted data.

Checksum Readback
A checksum readback will cause a file’s atime to be updated. The nocksumatime

mount option can be used to restore a file’s atime after readback completion.
Supported Algorithms

The HPSSFS-FUSE Checksum feature supports the following hashing algorithms:

e Adler32
* CRC32
 MD5

SHA1

SHA224

SHA256

SHA384

SHA512

Concurrency

The HPSSFS-FUSE Checksum feature is designed to consider several forms of concurrency. They are
all implemented by using UDAs to create a persistent lock and persistent leases. When a file is
opened for checksum processing, the mount point acquires a UDA lock and lease. All
threads/processes which open the file on a single mount point have their own context, and so can
be viewed as separate instances from the standpoint of concurrency. Each time a file is opened, the
open count for the file will be incremented. Upon close, the open count will be decremented. If you
reach an open count of zero and detect that other users had opened the file, then you will perform
a readback-on-close to regenerate the checksum metadata. Similarly, readback-on-open will only be
performed if you are the first to open a file.

9.4.2. Configuration

Mount Options

There are several mount options that control the HPSSFS-FUSE Checksum feature:

» cksum— This options chooses which algorithm to use for checksum processing when a new
checksummed file is created. The algorithm is always determined by checksum metadata for
existing checksummed files. This option is required to enable checksum. If it is not specified,
checksum processing will never take place on this mount point. The supported values (case-

63

insensitive) are:
o cksum=none — Disable checksum; default
o cksum=adler32 —Use Adler32 algorithm
o cksum=crc32 — Use CRC32 algorithm
o cksum=md5 — Use MD?5 algorithm
o cksum=shal — Use SHA1 algorithm
o cksum=sha224 — Use SHA224 algorithm
o cksum=sha256 — Use SHA256 algorithm
o cksum=sha384 — Use SHA384 algorithm
o cksum=sha512 — Use SHA512 algorithm

* nch—This option chooses what to do when a non-checksummed file is opened. Otherwise,
normal checksumming operations occur. The supported values are:

> nch=i —Do not perform any checksum processing; allow non-checksummed files to open
successfully. Concurrency bookkeeping will still occur, and if concurrency is detected, this
will still perform readback-on-close checksumming.

> nch=g— Generate a new checksum. This will perform readback-on-open checksumming and
apply the generated checksum to the metadata.

o nch=f —If the file is non-checksummed, the open will fail; default

* rvl —Revalidation timeout: number of seconds that a checksum is considered valid since it was
last successfully verified. The default is 0, so checksums are verified on every open. A non-zero
value allows subsequent opens to succeed without performing a readback if they occur within
this timeout since the last verification by this mount point.

[5 - Mount Options]

* ckstyle — Where to store checksum metadata. The supported values are:
o ckstyle=filehash— Store in File Hash metadata
o ckstyle=uda — Store in UDA metadata

o ckstyle=hybrid — Store in both File Hash and UDA metadata; default

Relation to Other Mount Options

Readbacks occur separately from normal file activity. Due to this, some mount options apply
differently to readbacks.

* [no]stage —Has no effect; readbacks always stage the file

* [no]stagetape —If nostagetape is set, files that are on tape cannot be opened for write, and
therefore cannot have their checksums updated. This does not apply to initial file creation in
single level tape classes of service, those files will have a checksum applied to them when they
are created. The stagetape mount option is only valid on HPSS 8.1 or newer.

» eremote_callout —Allows the HPSSFS-FUSE mount point administrator to run arbitrary
operations in response to EREMOTE errors from the nostagetape option. For example, this
option can be used to populate a list of files that need to be staged at some later time. The
callout can also be used for more complex automated processing, such as feeding the requests

64

into a mass recall tool, which would notify the users when their request was completed and the
data was available for use. This process could include things like purgelocking the data for some
amount of time, prioritization by user or project, etc. HPSSFS-FUSE passes the following
positional parameters to the callout executable:

o Requesting ID

o Bitfile ID

> Requesting User ID

> Requesting Group ID
o HPSS File Path

For a simple example of a callout with comments, see fuse_callout.ksh in the
example folder.

Callout code should avoid risks to HPSSFS-FUSE

Q The arbitrary callout code should not interact with or pose a risk to HPSSFS-FUSE.
For example, the code should not generate an EREMOTE - the same error condition
which is to be addressed.

9.4.3. External Application Interoperability

HPSSFS-FUSE Checksum is designed to be compatible with other applications which use HPSS
Checksums, including HSI, hpsssum, and HPSSFS-VES. These programs use a unified UDA path for
storing checksum metadata. The Checksum UDA values are all case-insensitive. There is no
mechanism to ensure coherency between HPSSFS-FUSE and HSI/hpsssum.

9.4.4. Checksum UDA Paths
The following is a list of UDA paths used for checksum and their purposes:

XPath xattr Description

/hpss/user/cksum/checksum user.hash.checksum The hash value of the file using the
specified algorithm

/hpss/user/cksum/algorithm user.hash.algorithm The algorithm used to calculate the hash

65

XPath xattr Description
/hpss/user/cksum/state user.hash.state The state of the current checksum value.
e Valid —The current checksum is
valid

* Invalid— The digest did not match
the readback digest

e Error —An error occurred when
trying to readback the file

* NoEntry—Not all of the required
checksum UDAs were present during
the last readback

These values may contain a comment,
delimited by a + character. Example:
Error+Failed to read file

/hpss/user/cksum/lastupdate user.hash.lastupdate A UNIX timestamp of the last time UDAs
were updated

/hpss/user/cksum/errors user.hash.errors Number of readback errors since the
last successful readback

/hpss/user/cksum/filesize user.hash.filesize Size of the file

/hpss/user/cksum/app user.hash.app Name of the application which last
updated the checksum UDAs

HPSSFS-FUSE-Specific UDA Paths

The following is a list of UDA paths which are only used by HPSSFS-FUSE and HPSSFS-VFS. They
should not be modified by end users, otherwise unexpected checksum behavior may occur.

XPath Description

/hpss/fs/user.open.total Number of concurrent opens on this file
/hpss/fs/user.mounts/* List of mount points that have this file open
/hpss/fs/user.open.lock Lock to serialize UDA access

/hpss/fs/user.leases/* List of mount point leases. This attribute only applies to HPSS’s

root directory. It is the "heartbeat" of checksum mount points. If a
lease expires, then any lock held by that mount point is invalid.

9.5. Auto Purge Lock

Auto Purge Lock is a feature that prevents files under a given size from being purged after
migration. It is controlled via the autopurgelock mount option.

66

When enabled, if a file is written to, it becomes a candidate for Auto Purge Lock. Once the file is
closed, if its size is less than or equal to the size specified by the autopurgelock mount option, then
the file is automatically purge locked. The file can still be migrated, but it will not be purged while it
remains purge locked.

9.6. Purge on Migrate

Purge on Migrate is a feature that allows files on disk to be purged after being migrated. It is
controlled via the purgeonmigr mount option.

9.7. POSIX.1e Draft ACLs

HPSS Access Control Lists (ACLs) are based on DCE ACLs. POSIX.1e Draft ACLs can map almost
directly onto HPSS ACLs. HPSSFS-FUSE supports POSIX.1e Draft ACLs through the xattr interface (as
many Linux filesystems do). Users and administrators should not use the xattr interface directly;
they can use the getfacl(1) and setfacl(1) commands and the libacl library to manipulate HPSS
ACLs through HPSSFS-FUSE.

HPSS ACLs are always enabled and they cannot be turned off. If no explicit HPSS ACLs exist for an
object, then HPSS will return an ACL based on the UNIX permissions set for the object.

The ability to view and manipulate ACLs is enabled with the acl mount option. If it is not provided,
or the noacl option is provided, attempts to access the system.posix_acl_access and
system.posix_acl_default xattrs will fail, and since the FUSE kernel will enforce UNIX permissions
and HPSS will enforce the HPSS ACLs, effective access will be determined by the intersection of
both, favoring restricted access.

HPSSFS-FUSE maps POSIX.1e Draft ACL entries between the following HPSS ACL entries:

HPSS ACL POSIX.1e Draft ACL Description

ACL_USER_0BJ ACL_USER_0BJ Access rights for the object’s owner

ACL_USER ACL_USER Access rights for the ACL entry’s UID

ACL_GROUP_0BJ ACL_GROUP_0BJ Access rights for the object’s group

ACL_GROUP ACL_GROUP Access rights for the ACL entry’s GID

ACL_MASK_0BJ ACL_MASK Maximum access rights that can be granted by
ACL entries of type ACL_USER, ACL_GROUP_0BJ, or
ACL_GROUP

ACL_OTHER_OBJ ACL_OTHER Access rights for processes that do not match

any other entry in the ACL

Some HPSS ACL entries have no equivalent in POSIX.1e Draft ACL entries. HPSSFS-FUSE will
preserve these HPSS ACL entries where they exist when the HPSS ACLs are manipulated:

ACL_FOREIGN_USER
ACL_FOREIGN_GROUP

67

ACL_FOREIGN_OTHER
ACL_UNAUTHENTICATED_MASK
ACL_ANY_OTHER
ACL_USER_OBJ_DELEGATE
ACL_USER_DELEGATE
ACL_FOREIGN_USER_DELEGATE
ACL_GROUP_0BJ_DELEGATE
ACL_GROUP_DELEGATE
ACL_FOREIGN_GROUP_DELEGATE
ACL_OTHER_OBJ_DELEGATE
ACL_FOREIGN_OTHER_DELEGATE
ACL_ANY_OTHER_DELEGATE

HPSS ACLs have the following access controls:

HPSS Access Control
Read (r)

Write (w)
Execute/Search (x)
Control (c)

Insert (i)

Delete (d)

POSIX.1e Draft access controls can be directly mapped to r, w, and x. The remaining access controls
cannot be directly manipulated by using HPSSFS-FUSE. HPSSFS-FUSE will preserve c, i, and d where
they exist when the HPSS ACLs are manipulated. Where new ACL entries are created, the following
will occur:

* When HPSSFS-FUSE creates a default ACL entry, it will set the i and d access controls on the
HPSS_ACL_INITIAL_CONTAINER_ACL.

* When HPSSFS-FUSE creates an ACL_USER_0BJ entry, it will set the ¢ access control.
* When HPSSFS-FUSE creates an ACL_MASK_0BJ entry, it will set the c, 1, and d access controls.

When the system.posix_acl_default =xattr is requested, HPSSFS-FUSE will use the
HPSS_ACL_INITIAL_OBJECT_ACL for mapping to the POSIX.1e ACL.

See acl(5) for more information.

See ID Mapping and ACLs for specific information regarding ID mapping support for ACLs.

9.8. ID Mapping

ID mapping allows local user and group IDs to be mapped to HPSS user and group IDs. This feature

68

is controlled by the idmap, uidfile, and gidfile mount options.

9.8.1. idmap=none

This option disables ID mapping, which is the default behavior.

9.8.2. idmap=user

This option maps the mounter’s local UID and GID to the HPSS UID and GID of the principal
provided by the princ mount option.

9.8.3. idmap-file

This option uses the uidfile and gidfile mount options to read ID mapping data. Both files have the
same format: a plain text file with one mapping entry per line. Each line has two fields, delimited
by either a colon "' or an equal sign '=. Comments can appear anywhere; they start with an
octothorpe/hash/pound '#' and continue until the end-of-line.

The first field is the local user/group name or numerical ID. The second field is the HPSS user/group
name or numerical ID. Example file:

format is local:hpss or local=hpss
johnsmith=jsmith

mlopez = 1000 # whitespace is trimmed
0=root # this mapping is to itself

9.8.4. ID Mappings and ACLs

When retrieving, storing, updating, or otherwise manipulating ACLs, ID mapping affects each ACL
entry. Since ACLs operate on groups of IDs, this may cause you to end up with an invalid ACL (i.e. it
contains multiple ACL_USER or ACL_GROUP entries with the same uid/gid). In these cases, the ACL
manipulation will simply fail. To avoid this problem, make sure that all HPSS users are mapped.

[1] Requires HPSS Trashcan feature.

[2] Directory ioctl’s require libfuse >= 2.9 and Linux kernel >= 3.3.
[3] Requires libfuse >= 2.9.1 and Linux kernel >= 3.5.

[4] Setting the COS to 0 will cancel a Change COS operation.

[5] Full path requires HPSS 7.5 or newer; otherwise outputs fileset-relative path.

69

Chapter 1. References

e HPSS Admin Guide

* HPSS Programmer’s Reference Guide

70

Chapter 10. Trademarks

Apache® is a registered trademark of Apache Software Foundation.
Arch™ is a trademark of Aaron Griffin and/or Judd Vinet.

CentOS™ is a trademark of Red Hat, Inc.

Debian® is a registered trademark of Software in the Public Interest, Inc.
Gentoo® is a registered trademark of Gentoo Foundation, Inc.

High Performance Storage System™ and HPSS™ are trademarks of International Business Machines
Corporation.

Intel® is a registered trademark of Intel Corporation.

Linux Mint™ is trademarked through the Linux Mark Institute.

Linux® is a registered trademark of Linus Torvalds.

Mageia™ is a trademark of Mageia.org.

Microsoft Windows® is a registered trademark of Microsoft Corporation.

Oracle® is a registered trademark of Oracle International Corporation.

POSIX® is a registered trademark of Institute of Electrical and Electronics Engineers, Inc.
0S/2® and PowerPC® are registered trademark of International Business Machines Corporation.
RHEL® and Fedora® are registered trademarks of Red Hat, Inc.

UNIX® is a registered trademark of The Open Group.

Ubuntu® is a registered trademark of Canonical Ltd.

openSUSE® and SUSE® are registered trademarks of Novell, Inc.

SAMBA™ is a trademark of Software Freedom Conservancy, Inc.

slackware® is a registered trademark of Patrick Volkerding and Slackware Linux, Inc.

SSH® is a registered trademark of SSH Communications Security Corporation.

71

	HPSSFS-FUSE Administrator’s Guide
	Table of Contents
	Chapter 1. Terminology
	Chapter 2. Overview
	Chapter 3. Availability
	3.1. Prerequisites
	3.2. Upgrading from HPSSFS-VFS
	3.2.1. RPM Replacement
	3.2.2. Mount Option Differences
	New HPSSFS-FUSE Options
	FUSE-Specific Options
	Removed Mount Options

	3.2.3. /proc Filesystem

	Chapter 4. Concepts
	4.1. HPSS and the Nature of Hierarchical Storage
	4.2. Architecture
	4.3. How It Works
	4.4. Supported Functionality and Limitations

	Chapter 5. Tuning & Troubleshooting
	5.1. Expectations
	5.2. Testing Procedures
	5.3. Tuning Concepts
	5.3.1. What are we tuning?
	5.3.2. Configuring for efficient HPSS storage

	5.4. Troubleshooting
	5.4.1. Syslog
	5.4.2. Foreground Logging
	5.4.3. HPSS Logs and Alarm & Events Display
	5.4.4. Core Dumps
	abrt.conf
	abrt-action-save-package-data.conf

	5.4.5. Force Unmount

	5.5. Special Notes
	5.5.1. updatedb(8)
	5.5.2. Mounting over SSH

	Chapter 6. Unprivileged Mounts
	Chapter 7. Uses
	7.1. General
	7.1.1. Overview
	7.1.2. Applications
	7.1.3. End-User Access to HPSSFS-FUSE
	cp(1) and mv(1) Commands

	7.2. SAMBA
	7.2.1. Configuration and Code Modification Suggestions

	7.3. NFS
	7.3.1. Overview
	7.3.2. Configuration Suggestions

	7.4. Secure FTP
	7.4.1. Configuration and Code Modification Suggestions

	7.5. Apache
	7.5.1. Overview
	7.5.2. Configuration Suggestions
	7.5.3. Recommendations

	Chapter 8. Mount Options
	8.1. Credentials
	8.2. HPSS Options
	8.3. Checksum Options
	8.4. Other HPSSFS-FUSE Options
	8.5. FUSE Options
	8.6. Kernel Options

	Chapter 9. Extensions
	9.1. ioctl(2) Interface
	9.1.1. Examples
	getcos.c
	getcos.py
	setcoshint.c
	setcoshint.py
	setfsizehint.c
	setfsizehint.py
	setmaxsegszhint.c
	setmaxsegszhint.py
	purge_cache.c
	purge_cache.py
	purge_lock.c
	purge_lock.py
	undelete.c
	undelete.py

	9.2. fallocate(2)
	9.2.1. Preallocate
	9.2.2. Punch Hole

	9.3. Linux Extended Attributes
	9.3.1. Features and Limitations
	Improvements Over HPSSFS-VFS
	Limitations

	9.3.2. system Namespace
	hls listing tool
	system.hpssfs.info
	system.hpssfs.opens
	system.hpss.level

	9.3.3. trusted Namespace
	9.3.4. security Namespace
	9.3.5. user Namespace

	9.4. Checksum
	9.4.1. Operation
	File Creation and Inline Checksumming
	File Open Readback
	File Close Readback
	Supported Algorithms
	Concurrency

	9.4.2. Configuration
	Mount Options
	Relation to Other Mount Options

	9.4.3. External Application Interoperability
	9.4.4. Checksum UDA Paths
	HPSSFS-FUSE-Specific UDA Paths

	9.5. Auto Purge Lock
	9.6. Purge on Migrate
	9.7. POSIX.1e Draft ACLs
	9.8. ID Mapping
	9.8.1. idmap=none
	9.8.2. idmap=user
	9.8.3. idmap=file
	9.8.4. ID Mappings and ACLs

	Chapter 1. References
	Chapter 10. Trademarks

